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1|Introduction    

The most justifiable version of information entropy is the Rényi entropy with a free Rényi non-extensivity 

parameter q, and the Tsallis entropy can be thought of as a linear approximation [1] to the Rényi entropy 

when q≈ 1. When q → 1, the Boltzmann-Shannon entropy function replaces both other entropy functions. 

When the Rényi entropy functional is subjected to the Maximum Information Entropy (MEP) principle, the 

result is the microcanonical (Homogenous) distribution for an isolated system. The Boltzmann entropy 

functional replaces the Rényi entropy functional in this situation, which supports the universality of 

Boltzmann's principle of statistical mechanics, regardless of the value of the Rényi parameter q. 

The need for non-extensive statistics based on Tsallis' information entropy is critical, given its quick 

development. The one-parameter family of Rényi entropies (Or just Rényi entropy) seems to be the most 

rational one [2]. The well-known Boltzmann-Shannon entropy functional replaces the Rényi entropy 
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  functional when the Rényi parameter q is equal to unity. The non-extensive Tsallis' entropy functional is 

produced by linearizing the extended Rényi entropy functional in the vicinity [2] of a point q ≈ 1. 

When the principle of Maximum MEP is applied to the Rényi entropy functional of an isolated system. At 

this phase, the Rényian functional reduces to the Boltzmannian functional, thus enforcing the Boltzmann 

principle from which all thermodynamic properties of extensive and non-extensive Hamiltonian systems can 

be deduced. 

The measure of information in this example of a system's incomplete statistical descriptor with the help of 

probabilistic distribution is called the information entropy functional, or just entropy p = {pi}, 0 ≤ pi ≤ 1, i =

1, … , n.  

Boltzmann-Shannon representation of the entropy functional is the most well-known to read as in Eq. (1): 

The entropy HB correlates with the thermodynamic entropy functional in the situation given, where the 

distribution pi is the system's macroscopic equilibrium state, and the subscripts i denote dynamic microstates 

in the Gibbs phase space. 

This entropy function was justified by [2]–[4] based on a system of axioms presented in a theorem form. 

Their axioms were analyzed in [2]–[4] where it was shown that a uniquely determined Boltzmann-Shannon 

entropic form is provided by a quite artificial axiom related to a form of conditional entropy functional (That 

is, the entropy functional of a subsystem of a system being in a prescribed state). On another strong note, [3] 

examined several papers on this topic and discovered that the Shore and Johnson [6] axiom system, which 

results in the Rényi entropy function [4], follows Eq. (2): 

The Rényi entropy functional, which is a mathematical measure, was used to quantify the amount of 

information or disorder in a system. It mentions that q (c.f., Eq. (2)) must be positive and not less than zero. 

The properties and characteristics of Rényi entropy functional are further explored in related literature [4]–

[6]. Among its basic properties, we may mention positivity ( HR
(q)

≥ 0), concavity for q ≤ 1, and in 

addition limq→1 HR
q

= HB.  

In the case of |1 − ∑ pi
q

i | ≪ 1 (Which, in view of the normalization of the distribution {p
i
}, corresponds to 

the condition |1 − q| ≪ 1), one can restrict oneself to the linear term of the logarithm in the expression for 

HR
(q)

(p) over this difference and HR
(q)

(p) changes to the defined form of Eq. (3). 

Such a linearization of the Rényi entropy functional was proposed by [11], [12]; at this time, the Tsallisian 

case had come into existence by [12]. 

The entropy functional stops being exhaustive due to logarithm linearization. To examine a range of non-

extensive systems, Tsallisian followers have extensively utilized this quality [7]–[15]. In doing so, the constraint 

|1 − q| ≪ 1 mentioned above is typically ignored.  

According to MEP, when describing a system statistically, its distribution function should accurately represent 

the average quantities observed in the system. If these quantities are not known, the distribution function 

should be as indeterminate as possible. This approach has been widely used in constructing equilibrium 

statistical thermodynamics for isolated or weakly interacting thermodynamic systems. 

HB =  −KB ∑ pilnpi

n

i=1

. (1) 

HR
(q)

(p) =  
KB

1 − q
l n (∑ pi

q

n

i=1

) , ∑ pi = 1

n

i=1

, (2) 

HT
(q)

(p) =  −
KB

1 − q
(1 − (∑ pi

q

n

i=1

)). (3) 
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  Gibbs ensembles [1]–[5] were widely used as a statistical approach to accurately represent average quantities 

observed in a system, as they are commonly used in constructing equilibrium statistical thermodynamics for 

isolated or weakly interacting thermodynamic systems. The information entropy functional, commonly 

referred to as the Boltzmann-Shannon entropy functional, is traditionally used to quantify the disorder or 

uncertainty in a system. 

This theorem introduces as it reads a new physical interpretation: As  Rényi entropy functional is more general 

than both Shannon and Tsallis, since Rényi entropy functional reduces to Shannon case as the parameter  q →

1,  and that Rényian entropy functional's linearization about a point q ≈ 1  is the Tsallisian entropy functional. 

This leads to a newer ground in information theory; we could represent it by the following Fig. 1:  

Fig. 1. A new cornerstone to information theory. 
 

In other words, this could be read as employing the Rényi entropy function to research any concept would 

generate the special case of Shannon case as the parameter q → 1, and would reduce to the Tsallis case if we 

carry out the linearization of the Rényi entropy function in the neighbourhood of a point q ≈ 1. 

Shannon entropy, sometimes referred to as Gibbs entropy in statistical physics, is a measure of disorder in a 

system. As an alternative to Gibbs entropy, Tsallis developed a non-extensive entropy [8], [10], indexed by q, 

which results in an infinite family of Tsallis non-extensive entropies. While Tsallis's non-extensive entropy 

produces type II generalized Lévy stable distributions with heavy tails that obey power laws, Gibbs's entropy 

produces exponential distributions. It is important to remember that Tsallis entropy is equivalent to Havrda-

Charvat's structural q-entropy [9], but the non-extensive mechanics community frequently ignores this 

relationship. Additionally, rather than the other way around, Tsallis distributions are derived from Lévy 

distributions. 

The current paper contributes to: 

I. The current study is a strong generalization of an existing research work in literature. 

II. The provision of entropic applications to machine learning. 

III. The exposition of several open problems.  

The flowchart of the provided work reads as follows: 

I. Introduction and literature review 

II. Results 

III. Entropic application to machine learning 

IV. Conclusion, open problems, and future research pathways 

2|Results 

We'll talk about how four different generalized t-distribution types can be derived from the definitions of 

Rényi entropy functional. The Lagrangian equation of the calculus of variations, a mathematical technique for 

optimizing functions subject to restrictions, is used to reach these conclusions. According to the author's 

analysis, these discoveries are brand-new, and they are presented. 

Result 1 

Rényi entropy functional can be optimized under Eq. (4): 
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Under the defined constraint of Eq. (5): 

We have the Lagrangian function ℒ to be as in Eq. (6):  

∂ℒ

∂pi
= 0 implies. 

Hence by Eq. (7), 

i.e., by Eq. (8): 

Defining Eq. (9) to be: 

Hence, clearly, it follows by Eq. (10) that 

where −∞ < x < ∞, a, b, c, d > 0, bd > 0, 1 > q > 0.  

Result two 

We have two constraints, by Eq. (4). 

Subject to that defined by Eq. (11):  

We have the Lagrangian function ℒ to be as in Eq. (12):  

∑ pi = 1

n

i=1

. (4) 

E(1 + a1|x|b) = constant. (5) 

ℒ = [
KB

(1 − q)
l n (∑ pi

q

n

i=1

) − α1 (∑ pi − 1

n

i=1

 ) − β1(E(1 + a1|x|b) −  constant)]. (6) 

(

qKB
1 − q

(∑ pi
qn

i=1 )
(∑ pi

q−1

n

i=1

) − α1 (∑ 1) −

n

i=1

β1 ∑(1 + a1|x|b)

n

i=1

) = 0. (7) 

qKB
1−q

pi
q−1

(∑ p
i
qn

i=1 )
 = α1 + β1 + β1a1|x|b = (α1 + β1) (1 +

β1a1

α1+β1
|x|b).        (8) 

β1a1

α1 + β1
= a, Cq−1 =  

(α1 + β1)(1 − q)

qKB
(∑ pi

q

n

i=1

) , d =  
1

1 − q
. (9) 

pi =  
c

(1 + a|x|b)d
, (10) 

∑|x|bpi
q

n

i=1

(x) =  constant. (11) 

ℒ = [
KB

(1 − q)
l n (∑ pi

q

n

i=1

) − α2 (∑ pi − 1

n

i=1

 ) + β2 (∑|x|bpi
q

n

i=1

(x) −  constant)]. (12) 
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  ∂ℒ

∂pi
= 0 implies Eq. (13): 

Hence, Eq. (14) follows: 

Thus, one gets Eq. (15): 

Hence, we have Eq. (16) to take the form: 

where −∞ < x < ∞, a, b, c, d > 0, bd > 0,
2b+1

b+1
> q > 1. Because these are partially related through Eqs. (4), 

(11) and (16) generate Tsallis distribution [8] for b = 2.       

Result three 

Following our approach as above is subject to the two constraints, as defined by Eq. (4) and, after prescribing 

Eq. (17): 

The reader can check that after a few algebraic steps, the solution is in the closed-form representation defined 

by Eq. (18): 

Such that Eq. (19) holds:   

where −∞ < x < ∞, a, b, c, d > 0, bd > 0, 1 > q >
1

b+1
,  α3, β3  are the Lagrangian multipliers. Eq. (17) defines 

the variance. 

Result four 

Following our approach as above is subject to more complex constraints, as by Eq. (4). Combined with the 

recalled Eq. (11) and the communicated Eq. (17). 

After a few algebraic steps, the reader can check that by optimizing Rényi's entropy functional subject to 

Constraints (4), (11) and (17), the reader can check that after few algebraic steps, the solution is in the closed 

form representation, as prescribed by Eq. (20): 

(

qKB
1 − q

(∑ pi
qn

i=1 )
(∑ pi

q−1

n

i=1

) − α2(∑ 1) + q

n

i=1

(β2 ∑|x|bpi
q−1

n

i=1

) = 0. (13) 

(

qKB
1 − q

(∑ pi
qn

i=1 )
(1 +

β2(1 − q)

qKB
(∑ pi

q

n

i=1

) |x|b)pi
q−1

= α2. (14) 

  Define a =   
β2(1−q)

qKB
(∑ pi

qn
i=1 ),   Cq−1 =  

α2(1−q)

qKB
(∑ pi

qn
i=1 ), d =  

1

q−1
. (15) 

pi =  
c

(1 + a|x|b)d
, (16) 

∑|x|bpi

n

i=1

(x) = constant. (17) 

pi =  
c

(1 + a|x|b)d
. (18) 

C =
α3(1−q)

qKB
(∑ pi

qn
i=1 ), Cq−1 =  

β3

α3
, d =  

1

1−q
,            (19) 

pi =  c(
1 + a|x|b

1 + a′|x|b
)d. (20) 
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  Exposing the parametric representation of Eq. (21): 

where −∞ < x < ∞, a, b, c, d > 0, bd > 0,
2b+1

b+1
> q > 1, α4, β4, γ4  are the Lagrangian multipliers. The variance 

corresponds to b =  2, Eq. (17) defines the variance. We can see that for 0, 𝑏 = 2,  Eq. (20) reduces to 

Tsallisian distribution [8] as a special case. 

By Eq. (20), we have for small values of |𝑥|, Eq. (22), follows: 

 Carrying out the same analysis, we have for large values of |𝑥|, as read by Eq. (23): 

This is summarized in the more compact form, as defined by Eq. (24): 

The Probability Density Functions (PDFs), given by Eq.s (10), (16), (18), and (20), refer to generalized t-

distributions, which exhibit polynomial tails for small values of x and power law tails for large values of x. 

These distributions encompass the entire range of Lévy stable distributions, which are commonly used to 

model extreme events and heavy-tailed phenomena. Specifically, Eq. (10) represents the PDFs for small values 

of x, while Eq. (20) represents the pdf for large values of x. This implies Eq. (25) 

where bd > 1. 

The outcomes for Eq.s (16), (18) and (20) are comparable. Since the Lévy distributions can be represented by 

the generalized t-distributions, as obtained by Eq.s (10), (16), (18), and (20), the density functions that can be 

obtained from Rényi entropy functional are even broader. It is clear from the analysis done and reported in 

Eq. (24), for Eq. (20), that the case is still relevant 

3|Entropic Applications to Machine Learning 

Feature selection [16] in machine learning involves identifying the most relevant and predictive features while 

excluding irrelevant or redundant ones. Information theory, specifically mutual information measuring the 

correlation between features and labels, is commonly used for this purpose. The exploration of using Rényi 

min-entropy for feature selection, showing that in practical experiments with real datasets, the Rényi-based 

algorithm tends to outperform the traditional Shannon-entropy-based approach in terms of performance, 

was extensively undertaken by [16]. 

In a more detailed perspective, the authors of [16] have provided a method for feature selection based on 

Rényi min-entropy, which is a measure of uncertainty in information theory. Additionally, it was shown that 

selecting the optimal set of features using min-entropy is computationally challenging (NP-hard) and proposes 

an iterative strategy to approximate the best feature subset efficiently [16]. The study [16] compared this 

approach with one based on Shannon entropy and demonstrated through experiments that the Rényi-based 

algorithm performs better in practice across different datasets. 

Cq−1 =
α4(1 − q)

qKB
(∑ pi

q

n

i=1

) , a =  
γ4

α4
, a′ =

β4(1 − q)

qKB
(∑ pi

q

n

i=1

)  d =  
1

q − 1
, (21) 

pi =  c(
1+a|x|b

1+a′|x|b)d  ~ c(1 + (a − a′)|x|b)d.                            (22) 

pi~c((a − a′)|x|b)d. (23) 

pi(x)~ {
c(1 + (a − a′)|x|b)d  = p1(x),                     for small |x|,

c((a − a′)|x|b)d    =    p2(x) ,                      for  large |x|.
 (24) 

p(x)~ {
c(1 − ad|x|b) = p1(x)  ,          for small |x|,

 c(a|x|b)
−d

=  p2(x),                 for  large |x|,
 (25) 
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  In this context, a dataset with 32 classes and 8 features is divided into two types [16], F and F', as showcased 

by Fig. 2 (c.f., [16]). Each type consists of 4 features. At a specific step in the process, the algorithm based on 

Shannon entropy selects a set of features, S1
3= {f1, f3, f4}, as one of the possible outcomes [17]. This selection 

is a result of the algorithm's approach to feature selection based on the information content provided by 

Shannon entropy. 

In the context of feature selection in machine learning [16], the text discusses the comparison between Rényi 

min-entropy and Shannon entropy algorithms. The explains that while the Rényi algorithm [16] may require 

additional steps to achieve complete accuracy in classification, the Shannon algorithm can stop when the 

classification is already completely accurate based on residual entropy and Bayes error. The comparison 

highlights that the choice between the two algorithms depends on the desired level of accuracy in the 

classification task [16]. 

Fig. 2. Features 𝐅 (Left) and 𝐅' (Right). 

 

When dealing with Artificial Neural Networks (ANNs), the complexity increases due to numerous parameters 

that can impact the network's structure [18]. To address this, the authors utilized Bayesian optimization. This 

method combines extensive search with Gaussian processes to determine the best parameters for the ANN 

model, such as the number of hidden layers, neurons per layer [18], learning rate, batch size, and epochs. By 

incorporating the Spearmint Bayesian optimization codebase and optimizing these parameters, they aimed to 

create a model that generalizes well and maximizes accuracy through a 10-fold cross-validation process before 

testing on unseen data [18]. 

It is worth noting that, Iin [16] the study, a bootstrap procedure with 5 iterations was used to shuffle data and 

ensure the results were independent of the specific training, validation, and test set split. Each iteration 

involved a new experimental run with different training-test set splits. Features were selected based on the 

training set using Shannon and Rényi min-entropy methods, with each iteration adding one selected feature 

at a time for a total of 50 steps. The models were trained and tested on the test set after hyper-parameter 

tuning with 10-fold cross-validation, demonstrating the effectiveness of Rényi min-entropy in feature 

selection, particularly with the BASEHOCK dataset. 

This explains that after conducting multiple iterations of feature selection using Rényi min-entropy and 

Shannon entropy methods, the average performance was computed and presented in Figs. 3, 4 and 5 (c.f., 

[16]). The results consistently showed that the feature selection approach based on Rényi min-entropy 

generally outperformed the Shannon entropy method, particularly when analyzing the BASEHOCK dataset. 
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Fig. 3. Comparison of the accuracy of artificial neural networks and support 

vector machine classifiers on the BASEHOCK dataset using different feature 

selection methods, specifically Shannon entropy and Rényi min-entropy. 

 

The results show that the feature selection method based on Rényi min-entropy generally yielded better 

performance compared to Shannon entropy, particularly with the BASEHOCK dataset, indicating the 

effectiveness of Rényi min-entropy in improving classification accuracy in machine learning tasks. 

Fig. 4. The results show that the Rényi min-entropy feature selection method generally 

outperformed Shannon entropy, particularly evident with the BASEHOCK dataset. 
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Fig. 5. The accuracy of artificial neural networks and support vector machine classifiers on the 

SEMEION dataset.  

These classifiers are evaluated based on their performance in classifying data within the SEMEION dataset, 

with the accuracy metric used to measure their effectiveness in making correct predictions. The comparison 

of ANNs and Support Vector Machine (SVM) classifiers' accuracy provides insights into their respective 

capabilities in handling the dataset for classification tasks. 

In deep reinforcement learning [19], a critical challenge is maintaining the agent's ability to explore effectively 

over the long term. To address this, a new method using Rényi entropy-based intrinsic rewards has been 

proposed to enhance exploration incentives and avoid the issue of vanishing rewards. This approach [19] 

improved exploration quality without the complexity of traditional methods, showing promising performance 

in simulations and offering potential applications in real-world scenarios like autonomous driving and smart 

manufacturing. 

In the context of the provided findings [19], Fig. 6 (c.f., [19]) illustrates how different objective functions 

behave when an agent learns from an environment with only three states. Fig. 6 shows that the Shannon 

entropy tends to maintain higher values as state probabilities decrease, potentially limiting exploration, while 

the Rényi entropy aligns better with the agent's exploration needs by penalizing small probabilities more 

effectively. This comparison highlights how the Rényi entropy offers a more flexible approach to encourage 

exploration in the learning process compared to the Shannon entropy. 

Fig. 6. Contours of different objective functions when |S| = 3.  
 

Notably, in a standard Variational Autoencoder (VAE), there are two key components: a recognition model 

(Encoder) denoted by qφ(z|s) and a generative model (Decoder) denoted by pψ(s|z). The encoder processes 

input observations to encode them into latent variables while the decoder reconstructs the observations from 

these latent variables. The VAE is trained by minimizing a loss function that balances the reconstruction error 

and the Kullback–Liebler (KL) divergence between the encoder and decoder distributions, as illustrated by 

Fig. 7 (c.f., [19]). 
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a. 

b. 

c. 

Fig. 7. Overview architecture of RISE; a. Variational autoencoder model for embedding observations, b. K-

value searching, c. Generation of intrinsic rewards, where k-NN is the k-nearest neighbour and _ denotes 

the Euclidean distance. 

In the context of the conducted research in [20], the text refers to using a grid-based environment called 

Maze2D to showcase the effectiveness of Rényi state entropy-driven exploration. Maze2D is a simple example 

used to demonstrate how this exploration method works in navigating through a maze with the goal of finding 

the shortest path from the start point to the endpoint, emphasizing the efficiency of the approach in this 

scenario, as depicted by Fig. 8 (c.f., [21]). 

In the maze game scenario described, the agent can move in four directions- left, right, up, and down- aiming 

to find the shortest path from the start point to the endpoint. Additionally, the agent can teleport from one 

portal to another identical mark within the maze. The experimental setting involves using the Q-learning 

algorithm to navigate through mazes of varying sizes, updating the Q-table at each step to enhance training 

efficiency and achieve optimal exploration performance. 

Fig. 8. A maze game with a grid size of 20 × 20. 
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  As showcased by Fig. 9 (c.f., [19]), Rényi State Entropy (RISE) outperformed other methods in terms of 

average return across six Atari games, with RISE achieving the highest performance consistently. Additionally, 

RISE demonstrated better training efficiency in terms of Frames Per Second (FPS) compared to other 

methods like RE3 and MaxRényi, showcasing its advantage in policy performance and learning efficiency. 

Fig. 9. Average episodes return versus the number of environment steps on Atari games. 

 

4|Conclusion, Open Problems, and Future Research Pathways 

Using distinct sets of circumstances to optimize the Rényi entropy function, we revealed fresh results in this 

study. The outcomes produce generalized t-distributions for the whole family of Lévy stable distributions. It 

is discovered that the Lévy distribution generalizes the Tsallisian case, not the other way around. The work 

of [22], where Shannon and Havrda-Charvat entropy functional were utilized, is strongly generalized in this 

work. 

The current paper flags several sophisticated open problems: 

I. Is it possible to replace the undertaken mathematical mechanism by Ismail's entropy (IE) (c.f., [23]). If so, 

what will be the generated distributions? 

II. It is expected that using IE would result in higher accuracies in feature selection in comparison to both 

Shannonian and Rényian cases. The mechanism could be quite sophisticated, but it is doable and would be 

highly promising as a new frontier to enhance machine learning. 

Future research pathways include delving into unlocking the proposed open problems, as well as the 

exploration of novel information-theoretic applications to interdisciplinary fields of human knowledge. 

Funding 

No specific funding was received for this research. 

References 

[1]  A Mageed, I. (2023). The consistency axioms of the stable M/G/1 queue’s z a, b non-extensive maximum entropy 

formalism with M/G/1 theory applications to 6G networks and multimedia applications. 2023 international 

conference on computer and applications (ICCA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCA59364.2023.10401411 

[2]  A Mageed, I., Zhang, Q., Kouvatsos, D. D., & Shah, N. (2022). M/G/1 queue with balking shannonian maximum 

entropy closed form expression with some potential queueing applications to energy. IEEE global energy conference, 

GEC 2022 (pp. 105–110). IEEE. http://dx.doi.org/10.1109/GEC55014.2022.9987144 



On the Rényi entropy functional, Tsallis distributions and lévy stable distributions with … 

 

102

 

  [3]  A Mageed, I., & Zhang, Q. (2022). Inductive inferences of z-entropy formalism (ZEF) stable M/G/1 queue with 

heavy tails. 2022 27th international conference on automation and computing (ICAC) (pp. 1–6). IEEE. 

https://doi.org/10.1109/ICAC55051.2022.9911090 

[4]  A Mageed, I., & FRSS, I. (2023). Where the mighty trio meet: Information theory (IT), pathway model theory (PMT) and 

queueing theory (QT) [presentation]. 39th annual uk performance engineering workshop. 

[5]  A Mageed, I. (2023). The entropian threshold theorems for the steady state probabilities of the stable M/G/1 

Queue with Heavy Tails with Applications of Probability Density Functions to 6G networks. Electronic journal of 

computer science and information technology, 9(1), 24–30. https://doi.org/10.52650/ejcsit.v9i1.138 

[6]  Begum, A., & Choudhury, G. (2023). Analysis of an M/(G1G2)/1 queue with bernoulli vacation and server 

breakdown. International journal of applied and computational mathematics, 9(1), 9. http://dx.doi.org/10.1007/s40819-

022-01481-4 

[7]  Kloska, S., Pałczyński, K., Marciniak, T., Talaśka, T., Nitz, M., Wysocki, B. J., Davis, P., & Wysocki, T. A. (2021). 

Queueing theory model of Krebs cycle. Bioinformatics, 37(18), 2912–2919. 

https://doi.org/10.1093/bioinformatics/btab177 

[8]  Mollaei, S., Darooneh, A. H., & Karimi, S. (2019). Multi-scale entropy analysis and Hurst exponent. Physica a: 

Statistical mechanics and its applications, 528, 121292. https://doi.org/10.1016/j.physa.2019.121292 

[9]  Kuaban, G. S., Soodan, B. S., Kumar, R., & Czekalski, P. (2022). A queueing-theoretic analysis of the performance 

of a cloud computing infrastructure: Accounting for task reneging or dropping. 2022 international conference on 

electrical, computer, communications and mechatronics engineering (ICECCME) (pp. 1–7). IEEE. 

http://dx.doi.org/10.1109/ICECCME55909.2022.9988250 

[10] Kłopotek, M. A., & Kłopotek, R. A. (2023). Towards continuous consistency axiom. Applied intelligence, 53(5), 

5635–5663. https://doi.org/10.1007/s10489-022-03710-1 

[11] Guo, C., Fang, S., & He, Y. (2023). A generalized stochastic process: fractional G-Brownian motion. Methodology 

and computing in applied probability, 25(1), 22. https://doi.org/10.1007/s11009-023-10010-9 

[12] Scully, Z., & Harchol-Balter, M. (2021). The gittins policy in the M/G/1 queue. 2021 19th international symposium 

on modeling and optimization in mobile, ad hoc, and wireless networks, wiopt 2021 (pp. 1–8). IEEE. 

https://doi.org/10.23919/WiOpt52861.2021.9589051 

[13] Jessup, I., & Meredithe, A. (2012). Using hybrid simulation/analytical queueing networks to capacitate usaf air 

mobility command passenger terminals. https://scholar.afit.edu/etd/1214 

[14] Nielsen, F. (2020). An elementary introduction to information geometry. Entropy, 22(10), 1100. 

https://doi.org/10.3390/e22101100 

[15] Ouadfeul, S. A. (2024). Fractal analysis-applications and updates. BoD-books on demand. https://B2n.ir/mn7361 

[16] Palamidessi, C., & Romanelli, M. (2020). Feature selection in machine learning: R’enyi min-entropy vs Shannon 

entropy. https://doi.org/10.48550/arXiv.2001.09654 

[17] Palamidessi, C., & Romanelli, M. (2018). Feature selection with rényi min-entropy. Artificial neural networks in 

pattern recognition: 8th IAPR TC3 workshop, ANNPR 2018, Siena, Italy, September 19-21, 2018, proceedings 8 (pp. 

226–239). Springer, Cham. https://doi.org/10.1007/978-3-319-99978-4_18 

[18] Will-Cole, A. R., Kusne, A. G., Tonner, P., Dong, C., Liang, X., Chen, H., & Sun, N. X. (2022). Application of 

Bayesian optimization and regression analysis to ferromagnetic materials development. IEEE transactions on 

magnetics, 58(1), 1–8. https://doi.org/10.1109/TMAG.2021.3125250 

[19] Yuan, M., Pun, M. O., & Wang, D. (2023). Rényi state entropy maximization for exploration acceleration in 

reinforcement learning. IEEE transactions on artificial intelligence, 4(5), 1154–1164. 

https://doi.org/10.1109/TAI.2022.3185180 

[20] Borelli, R., Dovier, A., & Fogolari, F. (2022). Data structures and algorithms for k-th nearest neighbours 

conformational entropy estimation. Biophysica, 2(4), 340–352. https://doi.org/10.3390/biophysica2040031 

[21] Lim, H. D., & Lee, D. (2022). Regularized Q-learning. https://doi.org/10.48550/arXiv.2202.05404 

[22] Rathie, P. N., & Da Silva, S. (2008). Shannon, Lévy, and Tsallis: A note. Applied mathematical sciences, 2(28), 1359–

1363. https://B2n.ir/th8692 

[23] Mageed, I. A., & Zhang, Q. (2022). An information theoretic unified global theory for a stable M/G/1 queue with 

potential maximum entropy applications to energy works. 2022 global energy conference (GEC) (pp. 300–305). 

IEEE. https://doi.org/10.1109/GEC55014.2022.9986719 

 


