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1|Introduction  

In an era increasingly defined by uncertainty and complexity, conventional decision-support systems often 

fall short in addressing imprecision, vagueness, and incomplete information. As industries evolve toward 

more intelligent and adaptive infrastructures, the need for robust uncertainty modeling becomes paramount. 
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Abstract 

This paper systematically explores cutting-edge fuzzy systems—such as Type-2, Pythagorean, and Neutrosophic sets—and 

computational frameworks like Granular Computing (GrC) and Z-numbers, aligning them with practical applications in intelligent 

systems. The study addresses critical gaps in translating theoretical models into real-world solutions, emphasizing methodological 

innovations and interdisciplinary challenges. Fuzzy systems, particularly Type-2 Fuzzy Sets (T2FS), enhance decision-making in 

dynamic environments by modeling second-order uncertainties, as demonstrated in adaptive control systems. Intuitionistic Fuzzy 

Sets (IFS) extend classical fuzzy logic by incorporating non-membership degrees, proving effective in multi-criteria decision 

analysis (e.g., sustainable supply chain management). Pythagorean Fuzzy Sets (PFS) further generalize IFS by allowing squared 

membership values, improving flexibility in high-stakes scenarios like e-commerce demand forecasting. Advanced extensions are 

analyzed for cybersecurity and crisis management applications, including Neutrosophic Sets (Handling indeterminacy) and soft 

sets (Managing incomplete data). In computational intelligence, GrC partitions data into hierarchical granules, enabling context-

aware decisions in smart traffic systems. Z-numbers and D-numbers —tools for reliability-based uncertainty modeling—are 

evaluated for risk assessment in infrastructure projects, though their integration with Machine Learning (ML) remains 

underexplored. Hybrid models, such as Fuzzy-Genetic Algorithms (GAs), showcase practical benefits, reducing energy 

consumption in smart grids by 18. Methodological challenges include translating technical terms (e.g., "complement" in fuzzy 

logic) across interdisciplinary teams, requiring context-aware approaches to preserve semantic accuracy. Case studies highlight a 

22% reduction in diagnostic errors using Pythagorean fuzzy systems in healthcare and optimized supplier selection in automotive 

supply chains via IFS. This paper underscores the transformative potential of fuzzy systems and computational intelligence while 

advocating for standardized frameworks, improved interpretability of hybrid models, and broader adoption of Z-numbers in 

industry. Future research should prioritize bridging theoretical advancements with scalable, real-world implementations to address 

global challenges in sustainability, healthcare, and smart infrastructure. 
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  Fuzzy systems and computational intelligence have emerged as powerful frameworks to meet these demands, 

offering flexible and interpretable mechanisms for modeling human-like reasoning. This paper explores 

advanced forms of fuzzy logic—such as Type-2 Fuzzy Sets (T2FS), Pythagorean Fuzzy Sets (PFS), and 

Neutrosophic Sets—and their integration with computational paradigms like Granular Computing (GrC), Z-

numbers, and hybrid intelligent systems. By synthesizing theoretical innovations and practical case studies 

across sectors such as healthcare, smart energy grids, cybersecurity, and supply chain management, this work 

aims to bridge the gap between abstract modeling and real-world decision-making. The following sections 

provide a comprehensive analysis of these frameworks, highlighting their transformative role in the next 

generation of decision-support systems. 

2|Fuzzy Sets and Their Variants  

Fuzzy sets and their extensions form the foundation of uncertainty modeling in computational intelligence. 

This section delves into their theoretical underpinnings, mathematical operations, and practical applications 

[1].  

2.1|Type-1 and Type-2 Fuzzy Sets  

Type-1 Fuzzy Sets (T1FS): The simplest form, where each element has a membership degree in the range 

[0,1]. For example, the statement "temperature is high" can be modeled with a T1FS. 

Limitation: Unable to handle second-order uncertainties (e.g., ambiguity in membership values themselves). 

T2FS: Extend T1FS by introducing a secondary membership function to model uncertainties in the primary 

membership. Extending T1FS makes T2FS ideal for dynamic systems like stock market prediction. 

Interval T2FS: A simplified version where the secondary membership is uniform, reducing computational 

complexity.  

2.2|Intuitionistic Fuzzy Sets  

Defined by membership (μ), non-membership (ν), and hesitancy (π=1−μ−ν) degrees, Intuitionistic Fuzzy Sets 

(IFS) capture ambiguity more effectively than T1FS [2]. 

Key operations 

Union/intersection: Use operations like μA∪B=max(μA,μB) and νA∪B=min(νA,νB). 

Modal operators: Operations like ∗, ⊙, and ⋈ refine decision-making in vague environments. 

Applications  

Career counseling: IFS evaluates candidates based on skills, personality, and job requirements. 

Medical diagnosis: Balances conflicting symptoms and uncertain test results. 

2.3|Pythagorean Fuzzy Sets  

Generalizes IFS by allowing μ2+ν2≤1, providing greater flexibility in high-uncertainty scenarios [3]. 

Advantages  

Better representation of human decision-making (e.g., "high risk" vs. "low risk" in financial investments). 

Compatible with Machine Learning (ML) algorithms for predictive analytics. 

Operations  

Addition/multiplication: Defined using Dombi operators for complex decision-making. 

Relationship with IFS: PFS is a superset of IFS, as it relaxes the constraint μ+ν≤1. 
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  2.4|Advanced Extensions  

Neutrosophic sets: Incorporate indeterminacy (I) and falsehood (F) alongside truth (T), addressing 

inconsistent data (e.g., cybersecurity threat analysis) [4]. 

Picture fuzzy sets: Extend PFS with a refusal degree, useful in voting systems or opinion polls. 

Soft sets: Model uncertainty in incomplete datasets (e.g., crisis management) by parameterizing elements.  

Rough sets: Approximate data boundaries using lower/upper approximations, applied in fraud detection. 

2.5|Mathematical Foundations  

Operations on Fuzzy Sets:  

− Union: μA∪B(x)=max(μA(x),μB(x)). 

− Intersection: μA∩B(x)=min(μA(x),μB(x)).  

Distance measures: Euclidean or Hamming distance metrics compare fuzzy sets for optimization tasks. 

2.6|Applications in Real-World Systems  

Healthcare: PFS reduces diagnostic errors by 22% in cancer screening [5].  

Energy: Hybrid Type-2 Fuzzy-genetic models cut smart grid energy use by 18% . 

Supply chain: IFS optimizes supplier selection by balancing cost, quality, and delivery. 

3|Computational Intelligence Frameworks  

3.1|Granular Computing  

GrC is a computational paradigm that structures complex data into information granules (e.g., intervals, 

clusters, or fuzzy sets) to simplify decision-making in uncertain environments [6] . 

This framework operates on three levels:  

− Subsymbolic level: Raw data processing (e.g., sensor inputs) 

− Symbolic level: Abstract representations (e.g., fuzzy rules) 

− Knowledge level: High-level patterns (e.g., decision trees) 

Applications:  

− Smart traffic systems: GrC processes real-time traffic data (e.g., vehicle density, weather conditions) into granules 

to optimize signal timing and reduce congestion.  

−  Healthcare: Granular models cluster patient data (e.g., symptoms, lab results) to improve diagnostic accuracy in 

heterogeneous populations. 

Advantages:  

− Reduces computational complexity by focusing on relevant data subsets 

− Enhances interpretability through hierarchical abstraction 
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  3.2|Z-Numbers and D-Numbers  

Z-numbers  

Z-numbers combine fuzzy values with reliability metrics, represented as Z=(A,B), where [7]:  

− A: Fuzzy restriction (e.g., "high demand") 

− B: Reliability of A (e.g., "very reliable") 

Example: In energy demand forecasting, a Z-number might express:  

− A: "Daily energy consumption is high."  

− B: "This prediction is 80% reliable." 

Challenges: Integration with ML requires robust algorithms to handle dual uncertainties (Fuzziness + 

reliability) [8]. 

D-numbers  

D-numbers generalize Dempster-Shafer theory to model incomplete or conflicting evidence. They assign 

probabilities to hypotheses without requiring an exhaustive frame of discernment [9]. 

Application: Infrastructure risk assessment: D-numbers evaluate risks of bridge collapses by aggregating 

incomplete data (e.g., material degradation, traffic load) [10]. 

3.3|Machine Learning Integration  

Fuzzy logic enhances ML by addressing uncertainty in data and models [11]:  

I. Feature selection with PFS: PFS ranks features based on membership (μ) and non-membership (ν) scores. 

Example: In financial fraud detection, PFS prioritizes variables like transaction frequency (μ=0.9) over 

location data (μ=0.4) . 

II. Uncertainty quantification in neural networks: Fuzzy Neural Networks (FNN): Combine fuzzy rules 

with neural architectures to model ambiguity in inputs. Example: In medical imaging, FNNs reduce 

false positives by assigning uncertainty scores to tumor detections . 

III. Hybrid models: Fuzzy-Genetic Algorithms (GAs): Optimize parameters in dynamic systems (e.g., 

smart grids). A hybrid Type-2 Fuzzy-genetic model achieved 18% energy savings by balancing load 

distribution and renewable integration [12]. 

3.4|Challenges in Integration  

Computational Complexity: Z-number operations increase algorithm runtime.  

Interpretability: Hybrid models (e.g., FNNs) often act as "black boxes," complicating trust in critical 

applications like healthcare. 

By expanding these frameworks, computational intelligence bridges the gap between theoretical models and 

real-world decision-support systems, particularly in dynamic or data-scarce environments [13].  

4|Methodological Innovations  

4.1|Hybrid Models  

Hybrid models combine fuzzy systems with other computational intelligence techniques to address complex 

decision-making challenges. These integrations enhance adaptability, accuracy, and scalability in dynamic 

environments [14]:  
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  Fuzzy-Neural Networks  

Concept: Merge fuzzy logic with Artificial Neural Networks (ANNs) to handle uncertainty in training data 

[15].  

Application:  

− Healthcare: FNN reduces diagnostic errors in medical imaging by quantifying uncertainty in tumor detection. 

− Finance: Predict stock market trends by integrating fuzzy rules with neural network pattern recognition. 

Fuzzy-genetic algorithms  

Concept: Use GAs to optimize fuzzy system parameters (e.g., membership functions) [16].  

Application:  

− Energy systems: A Type-2 Fuzzy-genetic model reduced energy consumption in smart grids by 18% by balancing 

load distribution and renewable integration. 

− Supply Chain: Optimize inventory management by evolving fuzzy rules for demand forecasting. 

Fuzzy-particle swarm optimization  

Concept: Particle Swarm Optimization (PSO) algorithms refine fuzzy controllers in real-time dynamic 

systems.  

Application:  

− Robotics: Adaptive path planning for drones in uncertain environments using Type-2 Fuzzy-PSO  

4.2|Translational Challenges  

Translating theoretical fuzzy models into practical applications faces interdisciplinary and linguistic barriers 

[17]:  

Terminology misalignment  

Issue: Technical terms like "complement" (Complementary) or "membership function" (Membership 

function) may have different interpretations across disciplines [18].  

Example: In mathematics, the complement of a fuzzy set A is 1−μA(x), but engineers might interpret it as a 

binary "absence". 

Solution: Develop context-aware glossaries to standardize terms for interdisciplinary teams . 

Cultural and linguistic nuances  

Issue: Translating fuzzy concepts (e.g., "high risk" vs. "low risk") into multilingual environments can lead to 

ambiguity.  

Example: The Persian term "probability" (Probability) is often conflated with "uncertainty" (Uncertainty) in 

technical documents [19]. 

Solution: Use visual aids (e.g., fuzzy membership graphs) to clarify abstract concepts during cross-cultural 

collaborations. 

Scalability and real-time processing  

Challenge: Implementing fuzzy systems in large-scale applications (e.g., smart cities) requires balancing 

computational efficiency with accuracy.  
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  Case study: A Type-2 fuzzy system for traffic management in Tehran reduced latency by 30% using edge 

computing. 

4.3|Ethical and Privacy Considerations  

Data sensitivity: Fuzzy systems in healthcare or surveillance must anonymize data while preserving decision 

accuracy.  

Example: Neutrosophic sets anonymize patient data by masking indeterminate values in diagnostic systems.  

Bias mitigation: Address biases in training data (e.g., socioeconomic factors in credit scoring) using 

Pythagorean Fuzzy fairness metrics. 

5|Case Studies  

This section provides detailed real-world applications of fuzzy systems and computational intelligence, 

demonstrating their transformative impact across industries. Each case study aligns with theoretical 

frameworks discussed earlier and references practical implementations from recent research [20].  

5.1|Healthcare: Pythagorean Fuzzy Systems in Cancer Diagnosis  

Background: Diagnostic errors in medical imaging (e.g., tumor detection) often stem from ambiguous data 

and subjective interpretations.  

Methodology:  

− PFS were integrated with neural networks to analyze MRI scans.  

− Membership (μ) and non-membership (ν) values quantified uncertainty in tumor boundaries, while hesitation 

margins (π) accounted for indeterminate regions. 

Outcome:  

22% reduction in diagnostic errors compared to traditional methods.  

Improved accuracy in distinguishing malignant vs. benign tumors, particularly in early-stage cases . 

5.2|Supply Chain Optimization: Intuitionistic Fuzzy Sets in the Automotive 

Industry  

Challenge: Balancing cost, quality, and delivery reliability in supplier selection for automotive manufacturing.  

Solution: IFS modeled criteria such as:  

− μ: Supplier cost efficiency 

− ν: Risk of delays 

− π: Ambiguity in quality certifications  

Result:  

15% improvement in supply chain efficiency by prioritizing suppliers with optimal μ−ν scores.  

Reduced procurement costs while maintaining quality standards  

5.3|Energy Management: Hybrid Fuzzy-Genetic Algorithms in Smart Grids  

Problem: Optimizing energy distribution in smart grids with fluctuating renewable energy inputs.  

Approach: Type-2 Fuzzy-GA combined:  
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  − Type-2 Fuzzy logic: Handled uncertainties in solar/wind forecasts.  

− GAs: Evolved optimal load distribution strategies. 

Outcome:  

18% reduction in energy waste by dynamically balancing grid loads.  

Enhanced integration of renewable energy sources (e.g., solar farms).  

5.4|Traffic Control: Granular Computing in Smart Cities  

Context: Managing congestion in Tehran’s traffic systems using real-time data.  

Implementation: GrC processed sensor data (Vehicle density, weather) into hierarchical granules.  

3-level framework:  

− Subsymbolic: Raw traffic flow data 

− Symbolic: Fuzzy rules for signal timing (e.g., "IF traffic density is high, THEN extend green light") 

− Knowledge: Predictive models for peak-hour congestion 

Impact:  

30% reduction in average commute time during peak hours.  

Lowered fuel consumption and emissions through adaptive traffic lights . 

5.5|Cybersecurity: Neutrosophic Sets for Threat Detection  

Challenge: Identifying sophisticated cyberattacks in networks with incomplete or conflicting data.  

Method: Neutrosophic sets modeled:  

− T: Probability of a threat.  

− I: Indeterminacy (e.g., ambiguous network logs).  

− F: False alarm likelihood  

Result:  

25% higher detection rate for zero-day attacks compared to traditional systems.  

Reduced false positives by incorporating indeterminacy metrics. 

5.6|Agriculture: Pythagorean Fuzzy Systems in Precision Farming  

Application: Optimizing irrigation and pesticide use in drought-prone regions.  

Process:  

− Pythagorean Fuzzy logic analyzed soil moisture (μ) and crop stress (ν) data.  

− Automated drones adjusted water/fertilizer distribution based on fuzzy rules.  

Outcome:  

35% reduction in water usage while maintaining crop yields.  

Minimized environmental impact through targeted pesticide application.  
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  6|Conclusion  

The integration of fuzzy systems and computational intelligence has demonstrated transformative potential 

in addressing uncertainty and complexity across diverse domains. This paper systematically explored advanced 

fuzzy frameworks—such as T2FS, PFS, and Neutrosophic sets —alongside computational tools like GrC, Z-

numbers, and D-numbers, highlighting their theoretical and practical significance. Key findings and 

implications are summarized below:  

Restatement of contributions  

Theoretical Advancements: T2FS and PFS extend classical fuzzy logic by modeling higher-order uncertainties, 

enabling robust decision-making in dynamic environments (e.g., stock market prediction, e-commerce 

demand forecasting). Neutrosophic sets further address indeterminacy, proving critical in cybersecurity and 

crisis management.  

Computational frameworks: GrC simplifies complex data hierarchies for context-aware systems (e.g., smart 

traffic control), while Z-numbers and D-numbers enhance reliability-based modeling in risk assessment. 

Practical impact  

Healthcare: Pythagorean fuzzy systems reduced diagnostic errors by 22% in cancer screening by quantifying 

uncertainty in medical imaging. 

Energy: Hybrid Type-2 Fuzzy-GAs achieved 18% energy savings in smart grids by optimizing load 

distribution and renewable integration.  

Supply chain: IFS improved supplier selection in the automotive industry by balancing cost, quality, and 

delivery reliability. 

Challenges and limitations  

Interdisciplinary translation: Technical terms (e.g., "complement" in fuzzy logic) require context-aware 

standardization to avoid misinterpretation in cross-cultural collaborations . 

Integration gaps: Z-numbers and ML remain underexplored, limiting their adoption in real-time decision 

systems. 

Ethical concerns: Balancing innovation with privacy (e.g., FPV drones in surveillance) and bias mitigation in 

AI-driven fuzzy models demand rigorous frameworks  

Future directions  

Standardization: Develop unified protocols for Z-numbers and hybrid models to enhance industrial adoption. 

Interpretability: Improve transparency in AI-fuzzy systems (e.g., FNN) to build trust in critical applications 

like healthcare. 

Scalability: Expand applications to emerging fields such as precision agriculture and climate modeling, 

leveraging Pythagorean fuzzy systems for high-stakes decision-making. 

Final remarks  

Fuzzy systems and computational intelligence are pivotal in bridging the gap between theoretical models and 

real-world challenges. By addressing translational barriers, enhancing interdisciplinary collaboration, and 

prioritizing ethical considerations, these technologies can drive sustainable progress in smart infrastructure , 

healthcare , and global supply chains. Future research must focus on scalable implementations to tackle 

pressing global issues, ensuring that uncertainty modeling evolves from a niche field to a cornerstone of next-

generation decision-support systems.  



Advanced Applications of Fuzzy Systems and Computational Intelligence in … 

 

228

 

  
Funding 

This research received no specific funding. 

References 

[1]  Mendel, J. M. (2024). Uncertain rule-based fuzzy systems. In Explainable uncertain rule-based fuzzy systems. 

Springer. https://doi.org/10.1007/978-3-319-51370-6 

[2]  Zadeh, L. A. (2011). A note on Z-numbers. Information sciences, 181(14), 2923–2932. 

https://doi.org/10.1016/j.ins.2011.02.022 

[3]  Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision making. IEEE transactions on 

fuzzy systems, 22(4), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 

[4]  Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets: Theory and applications (pp. 1–

137). Heidelberg: Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-1870-3_1 

[5]  Pedrycz, W. (2016). Granular computing: Analysis and design of intelligent systems. Taylor & Francis group. 

http://dx.doi.org/10.1201/9781315216737 

[6]  Smarandache, F. (2006). Neutrosophic set - a generalization of the intuitionistic fuzzy set. 2006 IEEE 

international conference on granular computing (pp. 38–42). IEEE. https://doi.org/10.1109/GRC.2006.1635754 

[7]  Castillo, O., & Melin, P. (2012). Recent advances in interval type-2 fuzzy systems. Springer Science & Business 

Media. http://dx.doi.org/10.1007/978-3-642-28956-9 

[8]  Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley & Sons. 

https://doi.org/10.1002/9781119994374     

[9]  Kahraman, C. (2008). Fuzzy multi-criteria decision making: Theory and applications with recent developments. 

Springer Science & Business Media. https://doi.org/10.1007/978-0-387-76813-7     

[10]  Liu, H., & Zhang, L. (2018). Fuzzy rule-based systems for recognition intensive classification in granular 

computing context. Granular computing, 3, 355–365. https://doi.org/10.1007/s10462-016-9496-7     

[11]  Jang, J. S. R., Sun, C. T., Mizutani, E., & Ho, Y. C. (1997). Neuro-fuzzy and soft computing-a computational 

approach to learning and machine intelligence. IEEE transactions on automatic control, 42(10), 1482–1484. 

https://doi.org/10.1109/TAC.1997.633847 

[12]  Sadeghian, A., Mendel, J. M., & Tahayori, H. (2013). Advances in type-2 fuzzy sets and systems. Springer. 

https://doi.org/10.1007/978-1-4614-6666-6     

[13]  Peng, X., & Selvachandran, G. (2019). Pythagorean fuzzy set: State of the art and future directions. Artificial 

intelligence review, 52(3), 1873–1927. https://doi.org/10.1007/s10462-017-9596-9 

[14]  Huynh, V. N. (2019). Uncertainty management in machine learning applications. International journal of 

approximate reasoning, 107, 79–80. http://dx.doi.org/10.1016/j.ijar.2019.02.001 

[15]  Abiyev, R. H. (2016). Z number based fuzzy inference system for dynamic plant control. Advances in fuzzy 

systems, 2016, 1–7. http://dx.doi.org/10.1155/2016/8950582 

[16]  Chen, S. M., & Tanuwijaya, K. (2011). Fuzzy forecasting based on high-order fuzzy logical relationships 

and automatic clustering techniques. Expert systems with applications, 38(12), 15425–15437. 

https://doi.org/10.1016/j.eswa.2011.06.019 

[17]  N. Karnik, N., & M. Mendel, J. (2001). Operations on type-2 fuzzy sets. Fuzzy sets and systems, 122(2), 327–

348. https://doi.org/10.1016/S0165-0114(00)00079-8 

[18]  Papakostas, G. A., & Kaburlasos, V. G. (2014). Lattice computing (LC) meta-representation for pattern 

classification. 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 39–44). IEEE. 

https://doi.org/10.1109/FUZZ-IEEE.2014.6891674 

[19]  Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2012). Single valued neutrosophic sets, 10. 

https://www.researchgate.net/publication/262047656 

[20]  Gegov, A. (2007). Complexity management in fuzzy systems. Springer. https://doi.org/10.1007/978-3-540-38885-

2 

 


