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1|Introduction    

License plate detection is critical in intelligent transportation systems and is used in traffic monitoring, toll 

collection, and access control applications. Automated License Plate Recognition (ALPR) systems typically 

involve two main components: License plate detection and character recognition. This project focuses on 

license plate detection, aiming to build a robust and efficient model capable of identifying license plates in 

diverse conditions. 

The You Only Look Once (YOLO) model, known for its real-time processing capability, has been chosen as 

the foundation for this project. Specifically, YOLOv8 a state of the art object detection model offers 

improved accuracy and speed compared to its predecessors, making it well suited for dynamic, real world 

applications. This paper presents the design, training, and evaluation of a YOLOv8 based model optimized 

for detecting license plates with high accuracy and minimal latency. 
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Abstract 

Automatic License Number Plate Detection (ALNPD) is a critical technology for identifying and processing vehicle 

registration numbers through image processing techniques. It finds extensive applications in traffic management, law 

enforcement, and automated toll collection systems. This paper presents an overview of ALNPD, highlighting its 

significance, methods, challenges, and emerging applications. It delves into the technical methodologies involved in 

detection, focusing on image preprocessing, localization, segmentation, and Optical Character Recognition (OCR). 

Furthermore, we discuss the challenges posed by varied lighting conditions, occlusion, and complex backgrounds 

while exploring future advancements and their potential impact on enhancing the robustness and accuracy of 

ALNPD systems.  
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2|Literature Review 

License plate detection has undergone significant evolution over the years. Initial methods primarily relied on 

heuristic techniques such as edge detection and morphological operations, which, while effective under 

controlled conditions, often failed in complex scenarios involving variable lighting, occlusions, and cluttered 

backgrounds. The advent of deep learning, particularly Convolutional Neural Networks (CNNs) [1], has 

revolutionized the field, enabling robust object detection even in challenging environments. Among these 

approaches, the YOLO family of models has emerged as a key solution due to its real-time processing 

capabilities. 

2.1|Evolution of You Only Look Once Models 

YOLOv1, introduced by Redmon et al. [2], was the first unified deep-learning model capable of real-time 

object detection. YOLOv1 predicted bounding boxes and class probabilities for each cell by dividing an image 

into grids. However, it struggled with small objects and overlapping detections, which are common in dense 

traffic scenarios. YOLOv2 addressed these challenges by incorporating anchor boxes, batch normalization, 

and a more robust backbone, Darknet-19, significantly improving accuracy for vehicle-mounted license plate 

detection [3]. YOLOv3 introduced multi-scale detection and a more profound architecture, Darknet-53, 

excelling at detecting small objects in high-resolution images [4]. 

Subsequent iterations focused on improving real-world performance. YOLOv4 optimized training 

techniques, including data augmentation (Bag-of-freebies) and specialized activation functions like Mish [5]. 

YOLOv5, developed independently, became popular for its lightweight implementation and faster inference 

times, making it suitable for edge deployments [6]. YOLOv6 enhanced inference speed and accuracy, 

particularly for high-density traffic applications [7]. YOLOv7 introduced Extended Efficient Layer 

Aggregation Networks (E-ELAN), which improved detection speed and precision under diverse 

environmental conditions [8]. 

The latest iterations, YOLOv8 to YOLOv10, incorporate transformer-based backbones and self-supervised 

learning, achieving state-of-the-art performance in complex detection tasks. These include handling 

occlusions, low lighting, and diverse license plate designs, further solidifying YOLO's dominance in real-time 

detection tasks [9]. 

Beyond YOLO, other object detection models have played significant roles in license plate detection. R-

CNN, was one of the first CNN-based object detection frameworks, using a two-stage process of region 

proposals and classification [10]. Although accurate, its computational inefficiency limited its real-time 

applicability. Faster R-CNN  improved upon this by introducing Region Proposal Networks (RPNs), reducing 

computational overhead while maintaining high precision [11]. The Single Shot multi-box Detector (SSD), 

achieved real-time performance by predicting bounding boxes directly from feature maps, offering a balance 

between speed and accuracy in dynamic scenarios [12]. 

3|Figures and Tables 

3.1|Figures 

Figures illustrate various outputs from the YOLOv8 model at different stages of the process, including: 

I. Sample images of detected license plates in real-world scenarios. 

II. Comparison images showing detections under various lighting conditions and angles. 

III. A sequence of images illustrating the effect of hyperparameter tuning on detection results. 



Automatic license number plate detection 

 

148

 

  3.2|Tables 

Tables 1 comparison table showing YOLOv8’s performance metrics (Accuracy, precision, recall, F1 score) 

alongside other models tested. Tables summarizing detection rates under different conditions (e.g., day, night, 

complex backgrounds). Data on computational performance, showing inference time per image across 

different hardware setups. 

4|Variables and Equations 

4.1|Variables 

Key model parameters: 

I. Conf: The confidence threshold is set to 0.25 for initial detections. 

II. imgsz: Input image size, chosen as 800 for this project to balance accuracy and processing speed. 

III. epochs: The number of training epochs is set to 100 to ensure adequate model learning without overfitting. 

IV. Equations: For evaluating model performance, the following equations are essential: 

 

4|Proposed Framework 

This section presents the framework for developing the license plate detection model using YOLOv8. 

I. YOLOv8 architecture: YOLOv8 integrates enhancements such as a refined feature pyramid and attention 

mechanisms that improve small object detection, which is crucial for license plates [13]. The model is 

trained with a custom data set specific to license plates, enhancing its performance for this task. 

II. Preprocessing and data augmentation: The data set is preprocessed with transformations to improve model 

generalization, including rotation, scaling, and brightness adjustments. Data augmentation helps the model 

learn to detect license plates under varied conditions. 

III. Training: YOLOv8 is trained using labeled images of vehicles with annotated license plates. The training 

process involves: Setting a batch size and learning rate optimal for license plate detection. 

IV. Regular monitoring of validation loss to prevent overfitting. 

V. Hyperparameter tuning, focusing on confidence threshold and input image size to improve detection rates. 

VI. Fine-tuning: Parameters are adjusted based on initial performance to achieve optimal results. Techniques 

such as adjusting the learning rate, using a larger data set, and increasing training epochs are applied 

iteratively to fine-tune the model. 

 

Precision =
True Positives

True Positives +  False Positives 
 .  

Recall =   
True Positives

True Positives +  False Negatives 
 .  

F1 Score = 2 × 
Precision × Recall

Precision +  Recall
.  
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Fig. 1. Proposed framework. 

 

5|Experimental Setup 

This section outlines the experimental setup used to evaluate the performance of multiple YOLO models 

specifically YOLOv4, YOLOv5, YOLOv7, and YOLOv8 on the task of license plate detection. The goal is 

to determine the most effective model regarding accuracy, speed, and robustness under various environmental 

conditions. 

5.1|Environment 

The experiments used google colab, which provides GPU acceleration to enhance training and inference 

speed. 

Jupyter notebook was used for code execution, documentation, and data visualization throughout the 

experiments. 

5.2|Dataset 

The dataset comprises images featuring various types of vehicles, all with visible license plates. It is segmented 

into: 

I. Training set: Used for model training to enable learning of complex features and patterns 

II. Validation set: Employed for hyperparameter tuning and intermediate performance evaluation 

III. Test set: Utilized for final evaluation to ensure unbiased comparison of model performance 

5.3|Training Parameters 

All YOLO models were trained under consistent conditions to allow for fair comparison. The following 

training parameters were used across all models [14]: 



Automatic license number plate detection 

 

150

 

  I. Epochs: 100 epochs to provide ample opportunity for models to learn detailed features while minimizing 

overfitting 

II. Image Size: 800 pixels, chosen to balance computational load and detection accuracy 

III. Plots: Visualization of the training process (Loss and accuracy graphs) was enabled to monitor model 

performance throughout training 

5.4|Model Configurations 

YOLOv4 

Implemented using the Darknet framework [15]. Enhanced with techniques such as data augmentation and 

advanced activation functions to improve accuracy under diverse conditions. 

YOLOv5 

A lightweight model optimized for faster inference times and smaller model size, suitable for edge deployment 

[16]. 

YOLOv7 

Features E-ELAN for efficient processing and enhanced detection speed and accuracy. 

YOLOv8 

The latest iteration integrates transformer-based backbones and self-supervised learning, which provides 

superior performance in handling complex detection tasks such as occlusions, low lighting, and varying plate 

designs. 

6|Experimental Results and Discussion 

The performance of four YOLO models YOLOv4, YOLOv5, YOLOv7, and YOLOv8 was evaluated and 

compared on the task of license plate detection. The analysis was based on quantitative and qualitative metrics 

to assess the models' ability to detect license plates across different conditions. This section presents the 

results obtained from testing these models and a comparative analysis with other state-of-the-art detection 

models like Faster R-CNN and SSD. 

6.1|Quantitative Analysis 

Precision, Recall, and F1-Score: These key metrics were calculated on the test dataset for each model. 

Precision reflects the proportion of true positive detections out of all detections, while recall indicates the 

proportion of true positive detections out of all ground truth license plates. The F1-score is the harmonic 

mean of precision and recall, providing a balanced performance measure. Table 1 presents the precision, recall, 

and F1-score for YOLOv4, YOLOv5, YOLOv7, and YOLOv8. 

YOLOv8 

Achieved the highest precision and recall, resulting in the best F1 score among all models. This indicates its 

superior ability to detect license plates accurately and reliably. 

YOLOv7 

Showed a good balance between speed and accuracy, with slightly lower precision and recall than YOLOv8, 

but still performed well in complex scenarios. 

YOLOv5 

Demonstrated competitive performance, especially in speed, but showed a slight drop in precision for smaller 

license plates. 
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  While effective, YOLOv4 had slightly lower precision and recall compared to the newer models, indicating 

its limitations in more dynamic or challenging environments. 

6.2|Inference Time 

Inference time was measured to assess each model's real-time detection capability. YOLOv8 demonstrated 

the fastest inference time, making it the best choice for real-time applications where speed is critical. YOLOv5 

followed closely, with inference times comparable to YOLOv8 but slightly slower. YOLOv4 and YOLOv7 

had relatively slower inference times, especially when processing larger images or complex scenes. 

6.3|Comparison with Other Models 

A direct comparison was made between the YOLO and alternative models such as Faster R-CNN and SSD. 

YOLOv4 

YOLOv4 provided solid accuracy but had slower inference times than the newer YOLO models. It also faced 

challenges detecting partially occluded plates, although it outperformed SSD in complex traffic scenarios. 

YOLOv5 

YOLOv5 demonstrated faster inference times than YOLOv4 and YOLOv7, making it ideal for real-time 

applications. However, its accuracy was slightly lower, particularly for smaller or partially occluded license 

plates. 

YOLOv7 

YOLOv7 showed a great balance between speed and accuracy. It outperformed YOLOv5 in accuracy, 

especially under challenging lighting and partial occlusion, but still lagged behind YOLOv8 in both precision 

and F1-score. 

YOLOv8 

YOLOv8 emerged as the best-performing model, excelling in detection accuracy and inference speed. It 

handled occlusions, varying lighting, and low-resolution images better than all the other models, and it was 

significantly faster than YOLOv4 and YOLOv7, making it highly suitable for real-time applications in 

Automatic Number Plate Recognition (ANPR) [17]. 

Table 1. Results. 

 

 

 

 

 

 

 

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%) Inference Time 

Yolo V4 89.5 88.2 88.8 87.00 30 

Yolo V5 91.2 90.5 90.8 90.0 25 

Yolo V7 93.0 92.8 92.9 92.5 22 

Yolo V8 95.0 94.7 94.8 94.5 18 
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Fig. 2. Model comparison: mAP. 

Fig. 3. Inference time comparison. 

 

Fig. 4. Example of YOLOv8 output under different lighting conditions. 
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Fig. 5. Comparison of license plate detection between YOLOv8 and YOLOv7. 

 

Fig. 6. Detection errors in YOLOv8 for license plates. 

 

0: 416x800 (No detections), 141.9ms 

Speed: 0.0ms preprocess, 141.9ms inference, 1.7ms postprocess per image at shape (1, 3, 416, 800) 

0: 416x800 1 numberplate, 133.1ms 

Speed: 0.0ms preprocess, 133.1ms inference, 0.0ms postprocess per image at shape (1, 3, 416, 800) 

0: 416x800 1 numberplate, 142.2ms 

Speed: 0.0ms preprocess, 142.2ms inference, 0.0ms postprocess per image at shape (1, 3, 416, 800) DL3CBJ 

1384 

0: 416x800 (No detections), 223.2ms 

Speed: 13.7ms preprocess, 223.2ms inference, 0.0ms postprocess per image at shape (1, 3, 416, 800) 

0: 416x800 1 numberplate, 160.8ms 

Speed: 5.5ms preprocess, 160.8ms inference, 0.0ms postprocess per image at shape (1, 3, 416, 800) DL 7C D 

5017 

0: 416x800 1 numberplate, 157.5ms 

Speed: 1.3ms preprocess, 157.5ms inference, 0.0ms postprocess per image at shape (1, 3, 416, 800) 

7|Conclusion 

This study demonstrates the effectiveness of YOLOv8 for real-time Automatic License Number Plate 

Detection (ALNPD). The YOLOv8 model achieved exceptional performance, providing both high accuracy 

and fast inference times, making it highly suitable for applications such as traffic management, law 

enforcement, and automated toll collection systems. YOLOv8's robust architecture, which integrates 
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  advanced features like transformer-based backbones and self-supervised learning, allowed it to outperform 

other YOLO models (YOLOv4, YOLOv5, YOLOv7) in terms of precision, recall, and F1-score while 

maintaining efficient processing speeds. 

Although YOLOv8 showed impressive results, specific challenges remain, particularly in detecting partially 

occluded or highly angled license plates. Though less frequent, these scenarios can still cause detection errors, 

which may impact the overall robustness of the system in real-world settings. Future research can focus on 

improving the model's capability to handle these edge cases by incorporating more diverse datasets, advanced 

data augmentation techniques, and hybrid models that combine the strengths of YOLO with other detection 

frameworks. 

In conclusion, YOLOv8 is a powerful tool for ALNPD, offering a balanced trade-off between speed and 

accuracy. It is well-suited for real-time deployment in automated systems. Further work on enhancing its 

ability to detect partially occluded plates and refining the model's adaptability in challenging conditions will 

ensure its broader applicability and robustness in intelligent transportation systems. 
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