Reaching The Pinnacle of the Digital WorldOpen Mathematical Problems in AI-Driven Robot Control

Authors

https://doi.org/10.22105/scfa.v2i2.54

Abstract

The convergence of Artificial Intelligence (AI) and robotics has brought about a fresh period of autonomous systems able to execute sophisticated jobs in changing and unpredictable settings. Although significant advancements have been achieved, a multitude of unresolved mathematical issues limit the use of AI-driven robots in safety-critical and real-world uses. Focusing on robustness, safety, learning, Human-Robot Interaction (HRI), and complicated system management, this study investigates several significant unresolved concerns at the crossroads of AI, control theory, and mathematics. Creating intelligent, dependable, and trustworthy autonomous robots depends on addressing these obstacles. Several influential open problems are introduced within the folds of this paper, with final thoughts on mathematizing AI-driven robot control.

Keywords:

Artificial intelligence, Artificial intelligence-driven robots, Machine learning, Robotics, Reinforcement learning, Deep neural networks

References

  1. [1] Kim, S. W., Kong, J. H., Lee, S. W., & Lee, S. (2022). Recent advances of artificial intelligence in manufacturing industrial sectors: A review. International journal of precision engineering and manufacturing, 23(1), 111–129. https://doi.org/10.1007/s12541-021-00600-3

  2. [2] Cantucci, F., Marini, M., & Falcone, R. (2025). Trustworthiness assessment of an adaptive and explainable robot in a real environment. International journal of social robotics, 1–12. https://doi.org/10.1007/s12369-025-01257-y

  3. [3] Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn, C., & Whiteson, S. (2025). A tutorial on meta-reinforcement learning. Foundations and trends® in machine learning, 18(2–3), 224–384. http://dx.doi.org/10.1561/2200000080

  4. [4] Jensen, K. T. (2023). An introduction to reinforcement learning for neuroscience. https://doi.org/10.48550/arXiv.2311.07315

  5. [5] Aljamal, M., Patel, S., & Mahmood, A. (2025). Comprehensive review of robotics operating system-based reinforcement learning in robotics. Applied sciences, 15(4), 1–39. https://doi.org/10.3390/app15041840

  6. [6] Manikandan, S., Kaviya, R. S., Shreeharan, D. H., Subbaiya, R., Vickram, S., Karmegam, N., … ., & Govarthanan, M. (2025). Artificial intelligence‐driven sustainability: Enhancing carbon capture for sustainable development goals–a review. Sustainable development, 33(2), 2004–2029. https://doi.org/10.1002/sd.3222

  7. [7] Dhanwe, S. S., Abhangrao, C. M., & Liyakat, K. K. S. (2024). AI-driven IoT in robotics: A review. Journal of mechanical robotics, 9(1), 41–48. https://www.researchgate.net/publication/379654203

  8. [8] Chan, K. Y., Abu-Salih, B., Qaddoura, R., Al-Zoubi, A. M., Palade, V., Pham, D. S., … ., & Muhammad, K. (2023). Deep neural networks in the cloud: Review, applications, challenges and research directions. Neurocomputing, 545, 126327. https://doi.org/10.1016/j.neucom.2023.126327

  9. [9] Dai, H., Landry, B., Yang, L., Pavone, M., & Tedrake, R. (2021). Lyapunov-stable neural-network control. https://doi.org/10.48550/arXiv.2109.14152

  10. [10] Mahmoud, A. T., Mohammed, A. A., Ayman, M., Medhat, W., Selim, S., Zayed, H., … ., & Elaraby, N. (2024). Formal verification of code conversion: A comprehensive survey. Technologies, 12(12), 1–28. https://doi.org/10.3390/technologies12120244

  11. [11] Li, B., Wen, S., Yan, Z., Wen, G., & Huang, T. (2023). A survey on the control lyapunov function and control barrier function for nonlinear-affine control systems. IEEE/CAA journal of automatica sinica, 10(3), 584–602. https://doi.org/10.1109/JAS.2023.123075

  12. [12] Wang, C., Qiang, X., Xu, M., & Wu, T. (2022). Recent advances in surrogate modeling methods for uncertainty quantification and propagation. Symmetry, 14(6), 1219. https://doi.org/10.3390/sym14061219

  13. [13] Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P. C. (2025). Uncertainty quantification and propagation in surrogate-based Bayesian inference. Statistics and computing, 35(3), 66. https://doi.org/10.1007/s11222-025-10597-8

  14. [14] Schöning, J., & Pfisterer, H. J. (2023). Safe and trustful AI for closed-loop control systems. Electronics, 12(16), 1–15. https://doi.org/10.3390/electronics12163489

  15. [15] Zakka, K., Wu, P., Smith, L., Gileadi, N., Howell, T., Peng, X. Bin, … ., & Zeng, A. (2023). Robopianist: Dexterous piano playing with deep reinforcement learning. https://doi.org/10.48550/arXiv.2304.04150

  16. [16] Pfanschilling, V., Shindo, H., Dhami, D. S., & Kersting, K. (2025). NeST: The neuro-symbolic transpiler. International journal of approximate reasoning, 179, 109369. https://doi.org/10.1016/j.ijar.2025.109369

  17. [17] Menghani, G. (2023). Efficient deep learning: A survey on making deep learning models smaller, faster, and better. Association for computing machinery computing surveys, 55(12), 1–37. https://doi.org/10.1145/3578938

  18. [18] Barron, S. L., Oldroyd, S. V, Saez, J., Chernaik, A., Guo, W., McCaughan, F., … ., & Owens, R. M. (2024). A conformable organic electronic device for monitoring epithelial integrity at the air liquid interface. Advanced materials, 36(8), 2306679. https://doi.org/10.1002/adma.202306679

  19. [19] Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., & Zhang, C. (2021). Cleanml: A study for evaluating the impact of data cleaning on ml classification tasks. 2021 IEEE 37th international conference on data engineering (ICDE) (pp. 13–24). IEEE. https://doi.org/10.1109/ICDE51399.2021.00009

  20. [20] Geelen, R., Balzano, L., & Willcox, K. (2023). Learning latent representations in high-dimensional state spaces using polynomial manifold constructions. 2023 62nd IEEE conference on decision and control (CDC) (pp. 4960–4965). IEEE. https://doi.org/10.1109/CDC49753.2023.10384209

  21. [21] Bin, M., & Parisini, T. (2023). A small-gain theory for abstract systems on topological spaces. IEEE transactions on automatic control, 68(8), 4494–4507. https://doi.org/10.1109/TAC.2023.3256760

  22. [22] Luo, J., Xu, C., Wu, J., & Levine, S. (2024). Precise and dexterous robotic manipulation via human-in-the-loop reinforcement learning. https://doi.org/10.48550/arXiv.2410.21845

  23. [23] Da, L., Turnau, J., Kutralingam, T. P., Velasquez, A., Shakarian, P., & Wei, H. (2025). A survey of sim-to-real methods in RL: Progress, prospects and challenges with foundation models. https://doi.org/10.48550/arXiv.2502.13187

  24. [24] de Croon, G. C. H. E., Dupeyroux, J. J. G., Fuller, S. B., & Marshall, J. A. R. (2022). Insect-inspired AI for autonomous robots. Science robotics, 7(67), eabl6334. https://doi.org/10.1126/scirobotics.abl6334

  25. [25] Aleixo, E. L., Colonna, J. G., Cristo, M., & Fernandes, E. (2023). Catastrophic forgetting in deep learning: A comprehensive taxonomy. https://doi.org/10.48550/arXiv.2312.10549

  26. [26] Zhu, D., Bu, Q., Zhu, Z., Zhang, Y., & Wang, Z. (2024). Advancing autonomy through lifelong learning: A survey of autonomous intelligent systems. Frontiers in neurorobotics, 18, 1385778. https://doi.org/10.3389/fnbot.2024.1385778

  27. [27] Song, Y. J. X., & Li, J. (2025). MDATA knowledge representation. In MDATA cognitive model: theory and applications (pp. 24). Springer. https://us.amazon.com/MDATA-Cognitive-Model-Applications-Computer-ebook/dp/B0DN4VSWDL

  28. [28] Xiang, Q., Zi, L., Cong, X., & Wang, Y. (2023). Concept drift adaptation methods under the deep learning framework: A literature review. Applied sciences, 13(11), 1–27. https://doi.org/10.3390/app13116515

  29. [29] Mukherjee, A., Divya, A. B., Sivvani, M., & Pal, S. K. (2024). Cognitive intelligence in industrial robots and manufacturing. Computers & industrial engineering, 191, 110106. https://doi.org/10.1016/j.cie.2024.110106

  30. [30] Malik, I. H. (2024). Can political ecology be decolonised? A dialogue with Paul Robbins. Geo: Geography and environment, 11(1), e00140. https://doi.org/10.1002/geo2.140

  31. [31] Yan, S., Zhang, B., Zhang, Y., Boedecker, J., & Burgard, W. (2024). Learning continuous control with geometric regularity from robot intrinsic symmetry. 2024 IEEE international conference on robotics and automation (ICRA) (pp. 49–55). IEEE. https://doi.org/10.1109/ICRA57147.2024.10610949

  32. [32] Wang, X., & Jia, W. (2025). Optimizing edge AI: A comprehensive survey on data, model, and system strategies. https://doi.org/10.48550/arXiv.2501.03265

  33. [33] Winkle, K., McMillan, D., Arnelid, M., Harrison, K., Balaam, M., Johnson, E., & Leite, I. (2023). Feminist human-robot interaction: Disentangling power, principles and practice for better, more ethical HRI. Proceedings of the 2023 acm/IEEE international conference on human-robot interaction (pp. 72–82). ACM. https://doi.org/10.1145/3568162.3576973

  34. [34] Pilditch, T. D. (2024). The reasoning under uncertainty trap: A structural ai risk. https://doi.org/10.48550/arXiv.2402.01743

  35. [35] Jonnavittula, A., Mehta, S. A., & Losey, D. P. (2024). SARI: Shared autonomy across repeated interaction. ACM transactions on human-robot interaction, 13(2), 1–36. https://doi.org/10.1145/3651994

  36. [36] Proia, S. (2024). Control techniques for collaborative and cooperative robotic systems. Politecnico di Bari. https://tesidottorato.depositolegale.it/handle/20.500.14242/64911

  37. [37] Robinson, N., Tidd, B., Campbell, D., Kulić, D., & Corke, P. (2023). Robotic vision for human-robot interaction and collaboration: A survey and systematic review. Association for computing machinery transactions on human-robot interaction, 12(1), 1–66. https://doi.org/10.1145/3570731

  38. [38] Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001

  39. [39] Rahimi, I., Gandomi, A. H., Chen, F., & Mezura-Montes, E. (2023). A review on constraint handling techniques for population-based algorithms: From single-objective to multi-objective optimization. Archives of computational methods in engineering, 30(3), 2181–2209. https://doi.org/10.1007/s11831-022-09859-9

  40. [40] Dawood, M., Pan, S., Dengler, N., Zhou, S., Schoellig, A. P., & Bennewitz, M. (2025). Safe multi-agent reinforcement learning for behavior-based cooperative navigation. IEEE robotics and automation letters, 10(6), 6256-6263. https://doi.org/10.1109/LRA.2025.3560830

  41. [41] Cao, P., Lei, L., Cai, S., Shen, G., Liu, X., Wang, X., … ., & Guizani, M. (2024). Computational intelligence algorithms for UAV swarm networking and collaboration: A comprehensive survey and future directions. IEEE communications surveys & tutorials, 26(4), 2684–2728. https://doi.org/10.1109/COMST.2024.3395358

  42. [42] Wan, K., Chen, Y., Zhao, J., & Yu, M. (2022). A decentralized fault-tolerant control for DC microgrids against disturbances and actuator faults. IEEE transactions on smart grid, 14(4), 2534–2544. https://doi.org/10.1109/TSG.2022.3229057

  43. [43] Pal, S., Dorri, A., & Jurdak, R. (2022). Blockchain for IoT access control: Recent trends and future research directions. Journal of network and computer applications, 203, 103371. https://doi.org/10.1016/j.jnca.2022.103371

  44. [44] Song, H., & Wang, Z. (2025). Dynamic event-triggered model predictive control for nonlinear discrete cyber-physical systems with hybrid attacks. IEEE transactions on automation science and engineering, 12, 15745–15756. http://dx.doi.org/10.1109/TASE.2025.3572469

  45. [45] Jain, R., Parmar, K. J., Palaniappan, D., & Premavathi, T. (2025). Hybrid control systems: Integrating AI with traditional methods. In Harnessing AI for control engineering (pp. 37–62). IGI Global Scientific Publishing. http://dx.doi.org/10.4018/979-8-3693-7812-0.ch002

  46. [46] Abbas, N., Abbas, Z., Zafar, S., Ahmad, N., Liu, X., Khan, S. S., … ., & Larkin, S. (2024). Survey of advanced nonlinear control strategies for UAVs: Integration of sensors and hybrid techniques. Sensors, 24(11), 1–51. https://doi.org/10.3390/s24113286

  47. [47] Scheres, K. J. A., Postoyan, R., & Heemels, W. M. (2024). Robustifying event-triggered control to measurement noise. Automatica, 159, 111305. https://doi.org/10.1016/j.automatica.2023.111305

  48. [48] Della Santina, C., Duriez, C., & Rus, D. (2023). Model-based control of soft robots: A survey of the state of the art and open challenges. IEEE control systems magazine, 43(3), 30–65. https://doi.org/10.1109/MCS.2023.3253419

  49. [49] Nagami, K., & Schwager, M. (2024). State estimation and belief space planning under epistemic uncertainty for learning-based perception systems. IEEE robotics and automation letters, 9(6), 5118–5125. https://doi.org/10.1109/LRA.2024.3387139

  50. [50] Tan, M., Zhuang, Z., Chen, S., Li, R., Jia, K., Wang, Q., & Li, Y. (2024). EPMF: Efficient perception-aware multi-sensor fusion for 3D semantic segmentation. IEEE transactions on pattern analysis and machine intelligence, 46(12), 8258–8273. https://doi.org/10.1109/TPAMI.2024.3402232

  51. [51] Sun, R., & Ren, Y. (2024). A multi-source heterogeneous data fusion method for intelligent systems in the Internet of Things. Intelligent systems with applications, 23, 200424. https://doi.org/10.1016/j.iswa.2024.200424

  52. [52] Shu, F., Wang, J., Pagani, A., & Stricker, D. (2022). Structure plp-slam: Efficient sparse mapping and localization using point, line and plane for monocular, rgb-d and stereo cameras. https://doi.org/10.48550/arXiv.2207.06058

  53. [53] Wangwongchai, A., Waqas, M., Dechpichai, P., Hlaing, P. T., Ahmad, S., & Humphries, U. W. (2023). Imputation of missing daily rainfall data; A comparison between artificial intelligence and statistical techniques. MethodsX, 11, 102459. https://doi.org/10.1016/j.mex.2023.102459

  54. [54] Kurniawati, H. (2022). Partially observable markov decision processes and robotics. Annual review of control, robotics, and autonomous systems, 5(1), 253–277. https://doi.org/10.1146/annurev-control-042920-092451

  55. [55] Taniguchi, A., Tabuchi, Y., Ishikawa, T., El Hafi, L., Hagiwara, Y., & Taniguchi, T. (2023). Active exploration based on information gain by particle filter for efficient spatial concept formation. Advanced robotics, 37(13), 840–870. https://doi.org/10.1080/01691864.2023.2225175

  56. [56] Bélisle-Pipon, J. C., Monteferrante, E., Roy, M. C., & Couture, V. (2023). Artificial intelligence ethics has a black box problem. AI & society, 38, 1507–1522. https://doi.org/10.1007/s00146-021-01380-0

  57. [57] Zeraati, M., Sheibani, M. R., Jabari, F., & Heydarian-Forushani, E. (2024). A novel state estimation method for distribution networks with low observability based on linear AC optimal power flow model. Electric power systems research, 228, 110085. https://doi.org/10.1016/j.epsr.2023.110085

  58. [58] Cifci, A. (2025). Interpretable prediction of a decentralized smart grid based on machine learning and explainable artificial intelligence. IEEE access, 13, 36285–36305. https://doi.org/10.1109/ACCESS.2025.3543759

  59. [59] Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep learning: a comprehensive survey and benchmark. Neurocomputing, 503, 92–108. https://doi.org/10.1016/j.neucom.2022.06.111

  60. [60] Kuznetsov, S. D., Velikhov, P. E., & Fu, Q. (2023). Real-time analytics: Benefits, limitations, and tradeoffs. Programming and computer software, 49(1), 1–25. https://doi.org/10.1134/S036176882301005X

  61. [61] Gupta, S. (2025). AI agents collaboration under resource constraints: Practical implementations. International journal of artificial intelligence research and development, 3(1), 51–63. http://dx.doi.org/10.34218/IJAIRD_03_01_004

  62. [62] Alhussain, A. (2024). Efficient processing of convolutional neural networks on the edge: A hybrid approach using hardware acceleration and dual-teacher compression. https://stars.library.ucf.edu/etd2023/321/

  63. [63] Flamm, B., Peter, C., Büchi, F. N., & Lygeros, J. (2021). Electrolyzer modeling and real-time control for optimized production of hydrogen gas. Applied energy, 281, 116031. https://doi.org/10.1016/j.apenergy.2020.116031

  64. [64] Zhao, Z., Cheng, S., Ding, Y., Zhou, Z., Zhang, S., Xu, D., & Zhao, Y. (2024). A survey of optimization-based task and motion planning: From classical to learning approaches. IEEE/ASME Transactions On Mechatronics, 1-27. https://doi.org/10.1109/TMECH.2024.3452509

  65. [65] Chacko, K., Augustine, M. T., Janardhanan, S., Patil, D. U., & Kar, I. N. (2023). Approximate dynamic programming based model predictive control of nonlinear systems. https://doi.org/10.48550/arXiv.2312.05952

  66. [66] Sharony, E., Yang, H., Che, T., Pavone, M., Mannor, S., & Karkus, P. (2024). Learning multiple initial solutions to optimization problems. https://doi.org/10.48550/arXiv.2411.02158

Published

2025-04-26

How to Cite

Reaching The Pinnacle of the Digital WorldOpen Mathematical Problems in AI-Driven Robot Control. (2025). Soft Computing Fusion With Applications , 2(2), 75-85. https://doi.org/10.22105/scfa.v2i2.54

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.