A Study on IoT-Enabled Smart Vehicles for Road Navigation and Ride Comfortability in Contemporary Vehicle Applications

Authors

https://doi.org/10.22105/scfa.v1i2.30

Abstract

Traditional navigation systems in vehicles often lack real-time data and personalized recommendations, leading to inefficient route planning and subpar ride comfortability. Drivers may encounter traffic congestion, road closures, and other obstacles that can disrupt their journey and increase stress levels. Additionally, the lack of connectivity and automation in vehicles can limit the ability to optimize routes, monitor vehicle performance, and enhance ride comfortability. With the advent of Internet of Things (IoT) technology, smart vehicles have the potential to address these issues by providing accurate and up-to-date information to drivers and passengers. The limitations highlight the conventional innovative solutions that can improve the overall driving experience and make transportation more convenient and enjoyable for users. The study adopted an argumentative approach combined with theoretical insights that involved a thorough analysis of existing literature and a case study on the trends, benefits, challenges, and potential impacts of IoT technology on the driving experience in modern vehicles. The research methodology included reviewing relevant studies on IoT technology, smart vehicles, transportation systems, and IoT-enabled vehicle features using online databases. The findings suggest that IoT-enabled smart vehicles have the potential to revolutionize road navigation and ride comfortability. By leveraging real-time data and connectivity features, these vehicles can provide drivers with accurate traffic updates, optimize routes based on current conditions, and even predict maintenance needs to prevent breakdowns. Regarding ride comfortability, IoT technology enables personalized settings for temperature, music, and seating preferences, as well as automated driving features that reduce driver fatigue and improve safety. The outcomes of this study highlight the transformative power of IoT-enabled smart vehicles in enhancing the driving experience and shaping the future of transportation. However, data privacy and security concerns must be addressed to fully realize IoT technology's benefits in smart vehicles.         

Keywords:

Internet of things technology, Smart vehicles, Road navigation, Ride comfortability, Transportation

References

  1. [1] Zeinab, K. A. M., & Elmustafa, S. A. A. (2017). Internet of things applications, challenges and related future technologies. World scientific news, 67(2), 126–148. https://www.researchgate.net/publication/313651150

  2. [2] Rahim, M. A., Rahman, M. A., Rahman, M. M., Asyhari, A. T., Bhuiyan, M. Z. A., & Ramasamy, D. (2021). Evolution of IoT-enabled connectivity and applications in automotive industry: A review. Vehicular communications, 27, 100285. https://doi.org/10.1016/j.vehcom.2020.100285

  3. [3] Phan, T. C., & Singh, P. (2023). A recent connected vehicle-IoT automotive application based on communication technology. International journal of data informatics and intelligent computing, 2(4), 40–51. https://doi.org/10.59461/ijdiic.v2i4.88

  4. [4] Vermesan, O., Bahr, R., Falcitelli, M., Brevi, D., Bosi, I., Dekusar, A., … ., & Simeon, J. F. (2022). IoT technologies for connected and automated driving applications. In Internet of things–the call of the edge (pp. 255–306). River Publishers. https://doi.org/10.1201/9781003338611

  5. [5] Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: A review of concepts, frameworks and key technologies. Applied sciences, 12(3), 1607. http://dx.doi.org/10.3390/app12031607

  6. [6] Janeera, D. A., Gnanamalar, S. S. R., Ramya, K. C., & Kumar, A. G. A. (2021). Internet of things and artificial intelligence-enabled secure autonomous vehicles for smart cities. In Automotive embedded systems: key technologies, innovations, and applications (pp. 201–218). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-59897-6_11

  7. [7] Rahman, M. A., Ali, J., Kabir, M. N., & Azad, S. (2017). A performance investigation on IoT enabled intra-vehicular wireless sensor networks. International journal of automotive and mechanical engineering, 14(1), 3970–3984. https://doi.org/10.15282/ijame.14.1.2017.12.0322

  8. [8] Ferrari, E. (2022). IoT-enabled environmental monitoring for autonomous vehicle safety. Journal of AI-assisted scientific discovery, 2(1), 86–107.

  9. [9] Guerrero-ibanez, J. A., Zeadally, S., & Contreras-Castillo, J. (2015). Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE wireless communications, 22(6), 122–128. https://doi.org/10.1109/MWC.2015.7368833

  10. [10] Al-Turjman, F., & Lemayian, J. P. (2020). Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities: An overview. Computers & electrical engineering, 87, 106776. https://doi.org/10.1016/j.compeleceng.2020.106776

  11. [11] Wakefield, E. H. (1993). History of the electric automobile: Battery-only powered cars. Society of Automotive engineers. https://www.amazon.com/History-Electric-Automobile-Battery-Only-Powered/dp/1560912995

  12. [12] Sperling, D. (2018). Three revolutions: Steering automated, shared, and electric vehicles to a better future. Island Press. https://link.springer.com/book/10.5822/978-1-61091-906-7

  13. [13] Andersson, P., & Mattsson, L.-G. (2015). Service innovations enabled by the internet of things. Imp journal, 9(1), 85–106. https://doi.org/10.1108/IMP-01-2015-0002

  14. [14] Mudge, R. (2004). Using technology to manage and operate 21st century transportation systems (No. NCHRP Project 20-24, Task 33). https://B2n.ir/hk5909

  15. [15] Lalit Abhilashi, B. K. Sarkar, Vandana Singh, S. K. P. (In Press). New transportation engineering technology. GEH Press. https://www.amazon.in/transportation-engineering-technology-Lalit-Abhilashi/dp/8196729367

  16. [16] Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., & Basheer, S. (2022). Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. Mobile information systems, 2022(1), 1-36. https://doi.org/10.1155/2022/7632892

  17. [17] Khayyam, H., Javadi, B., Jalili, M., & Jazar, R. N. (2020). Artificial intelligence and internet of things for autonomous vehicles. In Nonlinear approaches in engineering applications: Automotive applications of engineering problems (pp. 39–68). Springer, Cham. https://doi.org/10.1007/978-3-030-18963-1_2

  18. [18] Mahmood, Z. (2020). Connected vehicles in the IoV: Concepts, technologies and architectures. In Connected vehicles in the internet of things: Concepts, technologies and frameworks for the IoV (pp. 3–18). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-36167-9_1

  19. [19] Coppola, R., & Morisio, M. (2016). Connected Car: Technologies, issues, future trends. Association for computing machinery computing surveys, 46(1), 1-36. https://doi.org/10.1145/2971482

  20. [20] Blasch, E., Pham, T., Chong, C. Y., Koch, W., Leung, H., Braines, D., & Abdelzaher, T. (2021). Machine learning/artificial intelligence for sensor data fusion–opportunities and challenges. IEEE aerospace and electronic systems magazine, 36(7), 80–93. https://doi.org/10.1109/MAES.2020.3049030

  21. [21] Kumar, B., Milind, S., & Srivastava, M. (2024). Advancement of advanced driver assistance system in automobiles through IoT implementation and integration. 2024 international conference on advances in computing, communication and applied informatics (ACCAI) (pp. 1–9). IEEE. https://doi.org/10.1109/ACCAI61061.2024.10602264

  22. [22] Campisi, T., Severino, A., Al-Rashid, M. A., & Pau, G. (2021). The Development of the smart cities in the connected and autonomous vehicles (CAVs) era: From mobility patterns to scaling in cities. Infrastructures, 6(7). https://doi.org/10.3390/infrastructures6070100

  23. [23] Strayer, D. L., Cooper, J. M., McCarty, M. M., Getty, D. J., Wheatley, C. L., Motzkus, C. J., & Horrey, W. J. (2019). Visual and cognitive demands of carplay, android auto, and five native infotainment systems. Human factors, 61(8), 1371–1386. https://doi.org/10.1177/0018720819836575

  24. [24] Shin, Y., Kim, S., Jo, W., & Shon, T. (2022). Digital forensic case studies for in-vehicle infotainment systems using android auto and apple carplay. Sensors, 22(19), 7196. https://doi.org/10.3390/s22197196

  25. [25] Every, M., Layton, L., & Marin, J. M. (2019). A software-centric solution to automotive audio for general purpose cpus. Audio engineering society conference: 2019 aes international conference on automotive audio. Audio Engineering Society.

  26. [26] Cerruela García, G., Luque Ruiz, I., & Gómez-Nieto, M. Á. (2016). State of the art, trends and future of bluetooth low energy, near field communication and visible light communication in the development of smart cities. Sensors, 16(11), 1968. https://doi.org/10.3390/s16111968

  27. [27] Gupta, V., & Rohil, M. K. (2012). Enhancing wi-fi with IEEE 802.11 u for mobile data offloading. International journal of mobile network communications and telematics, 2(4), 19–29. http://dx.doi.org/10.5121/ijmnct.2012.2403

  28. [28] Webb, J. J. C. Q. (2010). Driving connectivity: The future of the US telematics industry and its impact to toyota motors (Doctoral dissertation, massachusetts institute of technology). https://dspace.mit.edu/handle/1721.1/59275

  29. [29] Mitra, P., Simonds, C., Chen, Y., & Strumolo, G. (2017). In‐vehicle health and wellness: An insider story. In Internet of things and data analytics handbook (pp. 427–445). Wiley online library. https://doi.org/10.1002/9781119173601.ch25

  30. [30] Lee, M. H., Park, H. G., Lee, S. H., Yoon, K. S., & Lee, K. S. (2013). An adaptive cruise control system for autonomous vehicles. International journal of precision engineering and manufacturing, 14, 373–380. https://doi.org/10.1007/s12541-013-0052-8

  31. [31] Baharuddin, M. I., Khamis, N. K., Kassim, K. A. A., & Mansor, M. R. A. (2019). Autonomous emergency brake (AEB) for pedestrian for asean ncap safety rating consideration: A review. Journal of the society of automotive engineers malaysia, 3(1), 63–73. https://doi.org/10.56381/jsaem.v3i1.110

  32. [32] Mishra, S., Bhattacharya, D., & Gupta, A. (2018). Congestion adaptive traffic light control and notification architecture using Google maps APIs. Data, 3(4). https://doi.org/10.3390/data3040067

  33. [33] Ramírez-Moreno, M. A., Keshtkar, S., Padilla-Reyes, D. A., Ramos-López, E., García-Martínez, M., Hernández-Luna, M. C., & Lozoya-Santos, J. de J. (2021). Sensors for sustainable smart cities: A review. Applied sciences, 11(17). https://doi.org/10.3390/app11178198

  34. [34] Anil, A., Shukla, V. K., & Naranje, V. (2021). Tracking vehicles through gps module and arduino uno. 2021 9th international conference on reliability, infocom technologies and optimization (Trends and future directions)(ICRITO) (pp. 1–6). IEEE. https://doi.org/10.1109/ICRITO51393.2021.9596167

  35. [35] Gorobetz, M., Timofejevs, J., Potapovs, A., & Obusevs, A. (2024). IoT-enabled single-camera speed sensor for smart city tasks. Electronics, 13(12), 2357. http://dx.doi.org/10.3390/electronics13122357

  36. [36] Bara, G. G., Bara, P. C., Castanõn, J., & Barbosa, M. T. (2019). Evaluating the usability of a head-up display while driving a vehicle. Advances in usability, user experience and assistive technology: Proceedings of the AHFE 2018 international conferences on usability & user experience and human factors and assistive technology, held on july 21–25, 2018, in loews sapphire falls resort at (pp. 184–194). Springer. https://doi.org/10.1007/978-3-319-94947-5_18

  37. [37] Appadurai, M., Raj, E. F. I., & Rani, E. F. I. (2025). Application of self-powered sensors and actuators in engineering and medical domains. In Self-powered aiot systems (pp. 27–62). Apple Academic Press. https://doi.org/10.1201/9781032684000-2

  38. [38] Mohammadi, F., & Rashidzadeh, R. (2021). An overview of IoT-enabled monitoring and control systems for electric vehicles. IEEE instrumentation & measurement magazine, 24(3), 91–97. https://doi.org/10.1109/MIM.2021.9436092

  39. [39] Rahman, M. A., Rahim, M. A., Rahman, M. M., Moustafa, N., Razzak, I., Ahmad, T., & Patwary, M. N. (2022). A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics. IEEE transactions on intelligent transportation systems, 23(10), 19727–19742. https://doi.org/10.1109/TITS.2021.3138255

  40. [40] Karim, M., Rahman, M. A., Tan, S. W., Atiquzzaman, M., Pillai, P., & Alenezi, A. H. (In Press). Intra-vehicular communication protocol for IoT enabled vehicle health monitoring system: Challenges, issues and Solutions. IEEE access. https://doi.org/10.1109/ACCESS.2024.3424418

  41. [41] Joshi, S., & Rambola, R. K. (2021). IoT‐enabled vehicle assistance system of highway resourcing for smart healthcare and sustainability. In Emerging technologies for healthcare: Internet of things and deep learning models (pp. 337–358). Wiley Online Library. https://doi.org/10.1002/9781119792345.ch14

  42. [42] Farahpoor, M., Esparza, O., & Soriano, M. (2023). Comprehensive IoT-driven fleet management system for industrial vehicles. IEEE access, 12, 193429-193444. https://doi.org/10.1109/ACCESS.2023.3343920

  43. [43] Ghaffarpasand, O., Burke, M., Osei, L. K., Ursell, H., Chapman, S., & Pope, F. D. (2022). Vehicle telematics for safer, cleaner and more sustainable urban transport: A review. Sustainability, 14(24). https://doi.org/10.3390/su142416386

  44. [44] Mishra, G., & Hegde, R. (2012). In-vehicle telematics-advanced technology contribution to intelligent automotives. Journal of information systems and communication, 3(1), 187. https://search.proquest.com/openview/474337dd66b2d154cc493e35119e1935/1.pdf?pq-origsite=gscholar&cbl=616602

  45. [45] Shah, K., Sheth, C., & Doshi, N. (2022). A survey on IoT-based smart cars, their functionalities and challenges. Procedia computer science, 210, 295–300. https://doi.org/10.1016/j.procs.2022.10.153

  46. [46] Muzahid, A. J. M., Kamarulzaman, S. F., Rahman, M. A., Murad, S. A., Kamal, M. A. S., & Alenezi, A. H. (2023). Multiple vehicle cooperation and collision avoidance in automated vehicles: Survey and an AI-enabled conceptual framework. Scientific reports, 13(1), 603. https://doi.org/10.1038/s41598-022-27026-9

  47. [47] Chipengo, U. (2018). Full physics simulation study of guardrail radar-returns for 77 GHz automotive radar systems. IEEE access, 6, 70053–70060. https://doi.org/10.1109/ACCESS.2018.2881101

  48. [48] Menon, V. G., Jacob, S., Joseph, S., Sehdev, P., Khosravi, M. R., & Al-Turjman, F. (2022). An IoT-enabled intelligent automobile system for smart cities. Internet of things, 18, 100213. https://doi.org/https://doi.org/10.1016/j.iot.2020.100213

  49. [49] Kolasani, S. (2024). Connected cars and autonomous vehicles: personalizing owner/customer experiences and innovation using AI, IoT, Blockchain, and Big Data. International numeric journal of machine learning and robots, 8(8), 1–17. https://www.researchgate.net/publication/382142266

  50. [50] Nicley, D. L. D., Lazaros, E. J., Truell, A. D., Zhao, J. J., & Davison, C. B. (2020). The connected car: a glimpse into the future of transportation. Issues in information systems, 21(2), 49-56. https://doi.org/10.48009/2_iis_2020_49-56

  51. [51] Bale, A. S., Narayanaswamy, V., Shanthakumar, V. Y., Shyla, P. B., Balakrishna, S., Nagaraja, V. S., & Esarapu, E. (2022). Recent advancement in emergency vehicle communication system using IoT. In IoT and big data analytics for smart cities (pp. 121–158). Chapman and Hall/CRC. https://doi.org/10.1201/9781003217404

  52. [52] Abdelwahab, S., Hamdaoui, B., Guizani, M., & Rayes, A. (2014). Enabling smart cloud services through remote sensing: An internet of everything enabler. IEEE internet of things journal, 1(3), 276–288. https://doi.org/10.1109/JIOT.2014.2325071

  53. [53] Ameen, H. A., Mahamad, A. K., Saon, S., Nor, D. M., & Ghazi, K. (2020). A review on vehicle to vehicle communication system applications. Indonesian journal of electrical engineering and computer science, 18(1), 188–198. http://dx.doi.org/10.11591/ijeecs.v18.i1.pp188-198

  54. [54] Zeadally, S., Guerrero, J., & Contreras, J. (2020). A tutorial survey on vehicle-to-vehicle communications. Telecommunication systems, 73(3), 469–489. https://doi.org/10.1007/s11235-019-00639-8

  55. [55] Narayanan, P. S., & Joice, C. S. (2019). Vehicle-to-vehicle (V2V) communication using routing protocols: A review. 2019 international conference on smart structures and systems (ICSSS) (pp. 1–10). IEEE. https://doi.org/10.1109/ICSSS.2019.8882828

  56. [56] Muslam, M. M. A. (2024). Enhancing Security in vehicle-to-vehicle communication: A comprehensive review of protocols and techniques. Vehicles, 6(1), 450–467. https://doi.org/10.3390/vehicles6010020

  57. [57] Jiménez, F., Naranjo, J. E., Anaya, J. J., García, F., Ponz, A., & Armingol, J. M. (2016). Advanced driver assistance system for road environments to improve safety and efficiency. Transportation research procedia, 14, 2245–2254. https://doi.org/10.1016/j.trpro.2016.05.240

  58. [58] Arena, F., & Pau, G. (2019). An overview of vehicular communications. Future internet, 11(2), 27. http://dx.doi.org/10.3390/fi11020027

  59. [59] Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network–Performance evaluation. Transportation research part c: emerging technologies, 68, 168–184. https://doi.org/10.1016/j.trc.2016.03.008

  60. [60] Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162–1182. https://doi.org/10.1109/JPROC.2011.2132790

  61. [61] Le, L., Festag, A., Baldessari, R., & Zhang, W. (2009). Vehicular wireless short-range communication for improving intersection safety. IEEE communications magazine, 47(11), 104–110. https://doi.org/10.1109/MCOM.2009.5307473

  62. [62] Wu, X., Subramanian, S., Guha, R., White, R. G., Li, J., Lu, K. W., & Zhang, T. (2013). Vehicular communications using DSRC: Challenges, enhancements, and evolution. IEEE journal on selected areas in communications, 31(9), 399–408. https://doi.org/10.1109/JSAC.2013.SUP.0513036

  63. [63] Michalski, R. A., & Vadekar, A. (2016). Opportunities for enhancing the robustness and functionality of the dedicated short range communications (DSRC) infrastructure through the use of satellite dars to improve vehicle safety in the 21st century. 34th AIAA international communications satellite systems conference (pp. 5713). Aerospace research central. https://doi.org/10.2514/6.2016-5713

  64. [64] Abboud, K., Omar, H. A., & Zhuang, W. (2016). Interworking of DSRC and cellular network technologies for V2X communications: a survey. IEEE transactions on vehicular technology, 65(12), 9457–9470. https://doi.org/10.1109/TVT.2016.2591558

  65. [65] Zhang, T., Liu, S., Xiang, W., Xu, L., Qin, K., & Yan, X. (2019). A real-time channel prediction model based on neural networks for dedicated short-range communications. Sensors, 19(16), 3541. https://doi.org/10.3390/s19163541

  66. [66] Mahmood, Z. (2021). Connected vehicles: A vital component of smart transportation in an intelligent city. In Developing and monitoring smart environments for intelligent cities (pp. 198–215). IGI Global. https://doi.org/10.4018/978-1-7998-5062-5.ch008

  67. [67] Hejazi, H., & Bokor, L. (2021). A survey on the use-cases and deployment efforts toward converged internet of things (IoT) and Vehicle-to-Everything (V2X) Environments. Acta technica jaurinensis, 15(2), 58–73. https://doi.org/10.14513/actatechjaur.00627

  68. [68] Zadobrischi, E., Cosovanu, L.-M., & Dimian, M. (2020). Traffic flow density model and dynamic traffic congestion model simulation based on practice case with vehicle network and system traffic intelligent communication. Symmetry, 12(7). https://doi.org/10.3390/sym12071172

  69. [69] Sanguesa, J. A., Barrachina, J., Fogue, M., Garrido, P., Martinez, F. J., Cano, J. C., & Manzoni, P. (2015). Sensing traffic density combining V2V and V2I wireless communications. Sensors, 15(12), 31794–31810. http://dx.doi.org/10.3390/s151229889

  70. [70] Thakur, A., Malekian, R., & Bogatinoska, D. C. (2017). Internet of things based solutions for road safety and traffic management in intelligent transportation systems. ICT innovations 2017: Data-driven innovation. 9th international conference, ICT innovations 2017, skopje, macedonia, september 18-23, 2017, proceedings 9 (pp. 47–56). Springer. https://doi.org/10.1007/978-3-319-67597-8_5

  71. [71] Yang, K., Huang, Y., Qin, Y., Hu, C., & Tang, X. (2021). Potential and challenges to improve vehicle energy efficiency via V2X: Literature review. International journal of vehicle performance, 7(3–4), 244–265. https://doi.org/10.1504/IJVP.2021.116058

  72. [72] Priyanka, E. B., Shankar, M. G., Tharun, S., Ravisankar, S., Saravanan, S. N., Kumar, B. B., & Pugazhenthi, C. (2021). Real-time performance analysis of multiple parameters of automotive sensor’s can data to predict vehicle driving efficiency. International journal of computing and digital system, 1337–1357.

  73. [73] Mukhtar, A., Xia, L., & Tang, T. B. (2015). Vehicle detection techniques for collision avoidance systems: A review. IEEE transactions on intelligent transportation systems, 16(5), 2318–2338. https://doi.org/10.1109/TITS.2015.2409109

  74. [74] Shao, C., Tanaka, S., Nakayama, T., Hata, Y., & Muroyama, M. (2018). Electrical design and evaluation of asynchronous serial bus communication network of 48 sensor platform LSIs with single-ended I/O for integrated MEMS-LSI sensors. Sensors, 18(1), 231. https://doi.org/10.3390/s18010231

  75. [75] Canzian, L., Demiryurek, U., & van der Schaar, M. (2015). Collision detection by networked sensors. IEEE transactions on signal and information processing over networks, 2(1), 1–15. https://doi.org/10.1109/TSIPN.2015.2504721

  76. [76] Nowakowski, C., Shladover, S. E., Cody, D., Bu, F., O’Connell, J., Spring, J., & Nelson, D. (2010). Cooperative adaptive cruise control: Testing drivers’ choices of following distances. https://escholarship.org/uc/item/58s2t0k3

  77. [77] Silalahi, L. M., Alaydrus, M., Rochendi, A. D., & Muhtar, M. (2019). Design of tire pressure monitoring system using a pressure sensor base. Sinergi, 23(1), 70–78. http://dx.doi.org/10.22441/sinergi.2019.1.010

  78. [78] Velupillai, S., & Guvenc, L. (2007). Tire pressure monitoring [Applications of control]. IEEE control systems magazine, 27(6), 22–25. https://doi.org/10.1109/MCS.2007.909477

  79. [79] Botaro, E. (2022). IoT-enabled environmental sensing for autonomous vehicle navigation and safety. Journal of bioinformatics and artificial intelligence, 2(2), 77–89. https://biotechjournal.org/index.php/jbai/article/view/42

  80. [80] Nasser, N., Ali, A. Y., Karim, L., & Al-Helali, A. (2024). Enhancing mobility for the visually impaired with ai and iot-enabled mobile applications. ScienceOpen preprints. https://doi.org/10.14293/PR2199.000775.v2

  81. [81] Khan, S. K., Shiwakoti, N., Stasinopoulos, P., & Chen, Y. (2020). Cyber-attacks in the next-generation cars, mitigation techniques, anticipated readiness and future directions. Accident analysis & prevention, 148, 105837. https://doi.org/10.1016/j.aap.2020.105837

  82. [82] Karnouskos, S., & Kerschbaum, F. (2017). Privacy and integrity considerations in hyperconnected autonomous vehicles. Proceedings of the IEEE, 106(1), 160–170. https://doi.org/10.1109/JPROC.2017.2725339

  83. [83] Nižetić, S., Šolić, P., Gonzalez-De, D. L. I., & Patrono, L. (2020). Internet of things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877. https://doi.org/10.1016/j.jclepro.2020.122877

  84. [84] Gudapalli, K., Md, A. P., Yagateela, S. O., Gongati, A., Adnan, M. M., Anandhi, R. J., & Kumar, A. (2024). Driving sustainability: IoT sensor integration for efficient car AC control. E3S web of conferences (pp. 1049). EDP Sciences. https://doi.org/10.1051/e3sconf/202450701049

  85. [85] Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206. http://dx.doi.org/10.3390/s23115206

  86. [86] Cheruvu, S., Kumar, A., Smith, N., & Wheeler, D. M. (2020). Demystifying internet of things security: Successful IoT device/edge and platform security deployment. Springer Nature. http://dx.doi.org/10.1007/978-1-4842-2896-8

  87. [87] Tariq, N., Asim, M., Al-Obeidat, F., Zubair Farooqi, M., Baker, T., Hammoudeh, M., & Ghafir, I. (2019). The security of big data in fog-enabled IoT applications including blockchain: A survey. Sensors, 19(8). https://doi.org/10.3390/s19081788

  88. [88] Khattak, H. A., Farman, H., Jan, B., & Din, I. U. (2019). Toward integrating vehicular clouds with IoT for smart city services. IEEE network, 33(2), 65–71. https://doi.org/10.1109/MNET.2019.1800236

  89. [89] Iqbal, J., Khan, M., Talha, M., Farman, H., Jan, B., Muhammad, A., & Khattak, H. A. (2018). A generic internet of things architecture for controlling electrical energy consumption in smart homes. Sustainable cities and society, 43, 443–450. https://doi.org/10.1016/j.scs.2018.09.020

  90. [90] Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE access, 8, 23022–23040. https://doi.org/10.1109/ACCESS.2020.2970118

Published

2024-04-25

How to Cite

A Study on IoT-Enabled Smart Vehicles for Road Navigation and Ride Comfortability in Contemporary Vehicle Applications. (2024). Soft Computing Fusion With Applications , 1(2), 59-79. https://doi.org/10.22105/scfa.v1i2.30

Similar Articles

1-10 of 20

You may also start an advanced similarity search for this article.