A Study on IoT-Enabled Smart Vehicles for Road Navigation and Ride Comfortability in Contemporary Vehicle Applications
DOI:
https://doi.org/10.22105/r5resa48Keywords:
IoT technology, Smart vehicles, Road navigation , Ride comfortability , TransportationAbstract
Traditional navigation systems in vehicles often lack real-time data and personalized recommendations, leading to inefficient route planning and subpar ride comfortability. Drivers may encounter traffic congestion, road closures, and other obstacles that can disrupt their journey and increase stress levels. Additionally, the lack of connectivity and automation in vehicles can limit the ability to optimize routes, monitor vehicle performance, and enhance ride comfortability. With the advent of IoT technology, smart vehicles have the potential to address these issues by providing accurate and up-to-date information to drivers and passengers. The limitations highlight the conventional innovative solutions that can improve the overall driving experience and make transportation more convenient and enjoyable for users. The study adopted an argumentative approach, combined with theoretical insights that involved a thorough analysis of existing literature and case study on the trends, benefits, challenges and potential impacts of IoT technology on driving experience in modern vehicles. The research methodology included a review of relevant studies on IoT technology, smart vehicles, transportation systems and IoT-enabled vehicle features using online databases. The findings suggest that IoT-enabled smart vehicles have the potential to revolutionize road navigation and ride comfortability. By leveraging real-time data and connectivity features, these vehicles can provide drivers with accurate traffic updates, optimize routes based on current conditions, and even predict maintenance needs to prevent breakdowns. In terms of ride comfortability, IoT technology enables personalized settings for temperature, music, and seating preferences as well as automated driving features that reduce driver fatigue and improve safety. The outcomes of this study highlight the transformative power of IoT-enabled smart vehicles in enhancing the driving experience and shaping the future of transportation. However, challenges such as data privacy and security concerns need to be addressed to fully realize the benefits of IoT technology in smart vehicles.
References
[1] Zeinab, K. A. M., & Elmustafa, S. A. A. (2017). Internet of things applications, challenges and related future technologies. World scientific news, 67(2), 126–148. https://bibliotekanauki.pl/articles/1178659.pdf
[2] Rahim, M. A., Rahman, M. A., Rahman, M. M., Asyhari, A. T., Bhuiyan, M. Z. A., & Ramasamy, D. (2021). Evolution of IoT-enabled connectivity and applications in automotive industry: a review. Vehicular communications, 27, 100285. https://www.sciencedirect.com/science/article/pii/S2214209620300565
[3] Phan, T. C., & Singh, P. (2023). A recent connected vehicle-IoT automotive application based on communication technology. International journal of data informatics and intelligent computing, 2(4), 40–51. https://ijdiic.com/index.php/research/article/view/88
[4] Vermesan, O., Bahr, R., Falcitelli, M., Brevi, D., Bosi, I., Dekusar, A., … Simeon, J. F. (2022). IoT technologies for connected and automated driving applications. In Internet of things–the call of the edge (pp. 255–306). River Publishers. https://www.taylorfrancis.com/chapters/oa-edit/10.1201/9781003338611-6/
[5] Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: a review of concepts, frameworks and key technologies. Applied sciences, 12(3), 1607.
[6] Janeera, D. A., Gnanamalar, S. S. R., Ramya, K. C., & Kumar, A. G. A. (2021). Internet of things and artificial intelligence-enabled secure autonomous vehicles for smart cities. In Automotive embedded systems: key technologies, innovations, and applications (pp. 201–218). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-59897-6_11
[7] Rahman, M. A., Ali, J., Kabir, M. N., & Azad, S. (2017). A performance investigation on IoT enabled intra-vehicular wireless sensor networks. International journal of automotive and mechanical engineering, 14(1), 3970–3984.
[8] Ferrari, E. (2022). IoT-enabled environmental monitoring for autonomous vehicle safety. Journal of ai-assisted scientific discovery, 2(1), 86–107.
[9] Guerrero-ibanez, J. A., Zeadally, S., & Contreras-Castillo, J. (2015). Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE wireless communications, 22(6), 122–128. DOI:10.1109/MWC.2015.7368833
[10] Al-Turjman, F., & Lemayian, J. P. (2020). Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities: an overview. Computers & electrical engineering, 87, 106776. https://www.sciencedirect.com/science/article/pii/S0045790620306315
[11] Wakefield, E. H. (1993). History of the electric automobile: battery-only powered cars. Society of Automotive engineers.
[12] Sperling, D. (2018). Three revolutions: Steering automated, shared, and electric vehicles to a better future. Island Press.
[13] Andersson, P., & Mattsson, L.-G. (2015). Service innovations enabled by the internet of things. Imp journal, 9(1), 85–106. https://www.emerald.com/insight/content/doi/10.1108/IMP-01-2015-0002/full/html
[14] Mudge, R. (2004). Using technology to manage and operate 21st century transportation systems (No. NCHRP Project 20-24, Task 33).
[15] Lalit Abhilashi, B. K. Sarkar, Vandana Singh, S. K. P. (In Press). New transportation engineering technology. GEH Press.
[16] Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., & Basheer, S. (2022). Autonomous vehicles and intelligent automation: applications, challenges, and opportunities. Mobile information systems, 2022(1), 1-36. https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/7632892
[17] Khayyam, H., Javadi, B., Jalili, M., & Jazar, R. N. (2020). Artificial intelligence and internet of things for autonomous vehicles. Nonlinear approaches in engineering applications: automotive applications of engineering problems, 39–68.
[18] Mahmood, Z. (2020). Connected vehicles in the IoV: concepts, technologies and architectures. In Connected vehicles in the internet of things: concepts, technologies and frameworks for the iov (pp. 3–18). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-36167-9_1
[19] Coppola, R., & Morisio, M. (2016). Connected Car: technologies, issues, future trends. ACM comput. surv., 49(3). DOI:10.1145/2971482
[20] Blasch, E., Pham, T., Chong, C.-Y., Koch, W., Leung, H., Braines, D., & Abdelzaher, T. (2021). Machine learning/artificial intelligence for sensor data fusion–opportunities and challenges. IEEE aerospace and electronic systems magazine, 36(7), 80–93. https://ieeexplore.ieee.org/abstract/document/9475913/
[21] Kumar, B., Milind, S., & Srivastava, M. (2024). Advancement of advanced driver assistance system in automobiles through iot implementation and integration. 2024 international conference on advances in computing, communication and applied informatics (ACCAI) (pp. 1–9). IEEE. https://ieeexplore.ieee.org/abstract/document/10602264/
[22] Campisi, T., Severino, A., Al-Rashid, M. A., & Pau, G. (2021). The Development of the smart cities in the connected and autonomous vehicles (CAVs) era: from mobility patterns to scaling in cities. Infrastructures, 6(7). DOI:10.3390/infrastructures6070100
[23] Strayer, D. L., Cooper, J. M., McCarty, M. M., Getty, D. J., Wheatley, C. L., Motzkus, C. J., & Horrey, W. J. (2019). Visual and cognitive demands of carplay, android auto, and five native infotainment systems. Human factors, 61(8), 1371–1386.
[24] Shin, Y., Kim, S., Jo, W., & Shon, T. (2022). Digital forensic case studies for in-vehicle infotainment systems using android auto and apple carplay. Sensors, 22(19), 7196.
[25] Every, M., Layton, L., & Marin, J. M. (2019). A software-centric solution to automotive audio for general purpose cpus. Audio engineering society conference: 2019 aes international conference on automotive audio. Audio Engineering Society. https://www.aes.org/e-lib/online/browse.cfm?elib=20536
[26] Cerruela García, G., Luque Ruiz, I., & Gómez-Nieto, M. Á. (2016). State of the art, trends and future of bluetooth low energy, near field communication and visible light communication in the development of smart cities. Sensors, 16(11), 1968.
[27] Gupta, V., & Rohil, M. K. (2012). Enhancing wi-fi with IEEE 802.11 u for Mobile data offloading. International journal of mobile network communications and telematics, 2(4), 19–29.
[28] Webb, J. J. C. Q. (2010). Driving connectivity: the future of the US telematics industry and its impact to toyota motors (doctoral dissertation, massachusetts institute of technology). https://dspace.mit.edu/handle/1721.1/59275
[29] Mitra, P., Simonds, C., Chen, Y., & Strumolo, G. (2017). In‐vehicle health and wellness: an insider story. Internet of things and data analytics handbook, 427–445. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119173601.ch25
[30] Lee, M. H., Park, H. G., Lee, S. H., Yoon, K. S., & Lee, K. S. (2013). An adaptive cruise control system for autonomous vehicles. International journal of precision engineering and manufacturing, 14, 373–380. https://link.springer.com/article/10.1007/s12541-013-0052-8
[31] Baharuddin, M. I., Khamis, N. K., Kassim, K. A. A., & Mansor, M. R. A. (2019). Autonomous emergency brake (AEB) for pedestrian for asean ncap safety rating consideration: a review. Journal of the society of automotive engineers malaysia, 3(1), 63–73.
[32] Mishra, S., Bhattacharya, D., & Gupta, A. (2018). Congestion adaptive traffic light control and notification architecture using Google maps APIs. Data, 3(4). DOI:10.3390/data3040067
[33] Ramírez-Moreno, M. A., Keshtkar, S., Padilla-Reyes, D. A., Ramos-López, E., García-Martínez, M., Hernández-Luna, M. C., & Lozoya-Santos, J. de J. (2021). Sensors for sustainable smart cities: a review. Applied sciences, 11(17). DOI:10.3390/app11178198
[34] Anil, A., Shukla, V. K., & Naranje, V. (2021). Tracking vehicles through gps module and arduino uno. 2021 9th international conference on reliability, infocom technologies and optimization (trends and future directions)(ICRITO) (pp. 1–6). IEEE. https://ieeexplore.ieee.org/abstract/document/9596167/
[35] Gorobetz, M., Timofejevs, J., Potapovs, A., & Obusevs, A. (2024). IoT-enabled single-camera speed sensor for smart city tasks. Electronics, 13(12), 2357.
[36] Bara, G. G., Bara, P. C., Castanõn, J., & Barbosa, M. T. (2019). Evaluating the usability of a head-up display while driving a vehicle. Advances in usability, user experience and assistive technology: proceedings of the ahfe 2018 international conferences on usability & user experience and human factors and assistive technology, held on july 21–25, 2018, in loews sapphire falls resort at (pp. 184–194). Springer. https://link.springer.com/chapter/10.1007/978-3-319-94947-5_18
[37] Appadurai, M., Raj, E. F. I., & Rani, E. F. I. (2025). Application of self-powered sensors and actuators in engineering and medical domains. In Self-powered aiot systems (pp. 27–62). Apple Academic Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781032684000-2/application-self-powered-sensors-actuators-engineering-medical-domains-appadurai-fantin-irudaya-raj-francy-irudaya-rani
[38] Mohammadi, F., & Rashidzadeh, R. (2021). An overview of IoT-enabled monitoring and control systems for electric vehicles. IEEE instrumentation & measurement magazine, 24(3), 91–97. https://ieeexplore.ieee.org/abstract/document/9436092/
[39] Rahman, M. A., Rahim, M. A., Rahman, M. M., Moustafa, N., Razzak, I., Ahmad, T., & Patwary, M. N. (2022). A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics. IEEE transactions on intelligent transportation systems, 23(10), 19727–19742. https://ieeexplore.ieee.org/abstract/document/9668996/
[40] Karim, M., Rahman, M. A., Tan, S. W., Atiquzzaman, M., Pillai, P., & Alenezi, A. H. (In Press). Intra-vehicular Communication Protocol for IoT Enabled Vehicle Health Monitoring System: challenges, issues and Solutions. IEEE ACCESS. https://ieeexplore.ieee.org/abstract/document/10587237/
[41] Joshi, S., & Rambola, R. K. (2021). IoT‐enabled vehicle assistance system of highway resourcing for smart healthcare and sustainability. In Emerging technologies for healthcare: internet of things and deep learning models (pp. 337–358). Wiley Online Library. https://doi.org/10.1002/9781119792345.ch14
[42] Farahpoor, M., Esparza, O., & Soriano, M. (2023). Comprehensive IoT-driven fleet management system for industrial vehicles. IEEE ACCESS.
[43] Ghaffarpasand, O., Burke, M., Osei, L. K., Ursell, H., Chapman, S., & Pope, F. D. (2022). Vehicle telematics for safer, cleaner and more sustainable urban transport: a review. Sustainability, 14(24). DOI:10.3390/su142416386
[44] Mishra, G., & Hegde, R. (2012). In-vehicle telematics-advanced technology contribution to intelligent automotives. Journal of information systems and communication, 3(1), 187. https://search.proquest.com/openview/474337dd66b2d154cc493e35119e1935/1.pdf?pq-origsite=gscholar&cbl=616602
[45] Shah, K., Sheth, C., & Doshi, N. (2022). A survey on IoT-based smart cars, their functionalities and challenges. Procedia computer science, 210, 295–300. https://www.sciencedirect.com/science/article/pii/S1877050922016106
[46] Muzahid, A. J. M., Kamarulzaman, S. F., Rahman, M. A., Murad, S. A., Kamal, M. A. S., & Alenezi, A. H. (2023). Multiple vehicle cooperation and collision avoidance in automated vehicles: survey and an AI-enabled conceptual framework. Scientific reports, 13(1), 603. https://www.nature.com/articles/s41598-022-27026-9
[47] Chipengo, U. (2018). Full physics simulation study of guardrail radar-returns for 77 GHz automotive radar systems. IEEE ACCESS, 6, 70053–70060. https://ieeexplore.ieee.org/abstract/document/8533336/
[48] Menon, V. G., Jacob, S., Joseph, S., Sehdev, P., Khosravi, M. R., & Al-Turjman, F. (2022). An IoT-enabled intelligent automobile system for smart cities. Internet of things, 18, 100213. DOI:https://doi.org/10.1016/j.iot.2020.100213
[49] Kolasani, S. (2024). Connected cars and autonomous vehicles: personalizing owner/customer experiences and innovation using AI, IoT, Blockchain, and Big Data. International numeric journal of machine learning and robots, 8(8), 1–17.
[50] Nicley, D. L. D., Lazaros, E. J., Truell, A. D., Zhao, J. J., & Davison, C. B. (2020). The connected car: a glimpse into the future of transportation. Issues in information systems, 21(2). https://iacis.org/iis/2020/2_iis_2020_49-56.pdf
[51] Bale, A. S., Narayanaswamy, V., Shanthakumar, V. Y., Shyla, P. B., Balakrishna, S., Nagaraja, V. S., & Esarapu, E. (2022). Recent advancement in emergency vehicle communication system using IoT. In IoT and big data analytics for smart cities (pp. 121–158). Chapman and Hall/CRC. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003217404-7/
[52] Abdelwahab, S., Hamdaoui, B., Guizani, M., & Rayes, A. (2014). Enabling smart cloud services through remote sensing: An internet of everything enabler. IEEE internet of things journal, 1(3), 276–288. https://ieeexplore.ieee.org/abstract/document/6817547/
[53] Ameen, H. A., Mahamad, A. K., Saon, S., Nor, D. M., & Ghazi, K. (2020). A review on vehicle to vehicle communication system applications. Indonesian journal of electrical engineering and computer science, 18(1), 188–198. https://www.researchgate.net/profile/Hussein-
[54] Zeadally, S., Guerrero, J., & Contreras, J. (2020). A tutorial survey on vehicle-to-vehicle communications. Telecommunication systems, 73(3), 469–489. DOI:10.1007/s11235-019-00639-8
[55] Narayanan, P. S., & Joice, C. S. (2019). Vehicle-to-vehicle (V2V) communication using routing protocols: a review. 2019 international conference on smart structures and systems (ICSSS) (pp. 1–10). IEEE.
[56] Muslam, M. M. A. (2024). Enhancing Security in vehicle-to-vehicle communication: a comprehensive review of protocols and techniques. Vehicles, 6(1), 450–467. DOI:10.3390/vehicles6010020
[57] Jiménez, F., Naranjo, J. E., Anaya, J. J., García, F., Ponz, A., & Armingol, J. M. (2016). Advanced driver assistance system for road environments to improve safety and efficiency. Transportation research procedia, 14, 2245–2254. https://www.sciencedirect.com/science/article/pii/S2352146516302460
[58] Arena, F., & Pau, G. (2019). An overview of vehicular communications. Future internet, 11(2), 27. https://www.mdpi.com/1999-5903/11/2/27
[59] Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network–Performance evaluation. Transportation research part c: emerging technologies, 68, 168–184.
[60] Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the ieee, 99(7), 1162–1182.
[61] Le, L., Festag, A., Baldessari, R., & Zhang, W. (2009). Vehicular wireless short-range communication for improving intersection safety. IEEE communications magazine, 47(11), 104–110.
[62] Wu, X., Subramanian, S., Guha, R., White, R. G., Li, J., Lu, K. W., & Zhang, T. (2013). Vehicular communications using DSRC: Challenges, enhancements, and evolution. IEEE journal on selected areas in communications, 31(9), 399–408.
[63] Michalski, R. A., & Vadekar, A. (2016). Opportunities for enhancing the robustness and functionality of the dedicated short range communications (DSRC) infrastructure through the use of satellite dars to improve vehicle safety in the 21st century [presentation]. 34th aiaa international communications satellite systems conference (p. 5713).
[64] Abboud, K., Omar, H. A., & Zhuang, W. (2016). Interworking of DSRC and cellular network technologies for V2X communications: a survey. IEEE transactions on vehicular technology, 65(12), 9457–9470.
[65] Zhang, T., Liu, S., Xiang, W., Xu, L., Qin, K., & Yan, X. (2019). A real-time channel prediction model based on neural networks for dedicated short-range communications. Sensors, 19(16), 3541.
[66] Mahmood, Z. (2021). Connected vehicles: a vital component of smart transportation in an intelligent city. In Developing and monitoring smart environments for intelligent cities (pp. 198–215). IGI Global.
[67] Hejazi, H., & Bokor, L. (2021). A survey on the use-cases and deployment efforts toward converged internet of things (IoT) and Vehicle-to-Everything (V2X) Environments. Acta technica jaurinensis, 15(2), 58–73. DOI:10.14513/actatechjaur.00627
[68] Zadobrischi, E., Cosovanu, L.-M., & Dimian, M. (2020). Traffic flow density model and dynamic traffic congestion model simulation based on practice case with vehicle network and system traffic intelligent communication. Symmetry, 12(7). DOI:10.3390/sym12071172
[69] Sanguesa, J. A., Barrachina, J., Fogue, M., Garrido, P., Martinez, F. J., Cano, J. C., & Manzoni, P. (2015). Sensing traffic density combining V2V and V2I wireless communications. Sensors, 15(12), 31794–31810.
[70] Thakur, A., Malekian, R., & Bogatinoska, D. C. (2017). Internet of things based solutions for road safety and traffic management in intelligent transportation systems. ICT innovations 2017: data-driven innovation. 9th international conference, ict innovations 2017, skopje, macedonia, september 18-23, 2017, proceedings 9 (pp. 47–56). Springer. https://link.springer.com/chapter/10.1007/978-3-319-67597-8_5
[71] Yang, K., Huang, Y., Qin, Y., Hu, C., & Tang, X. (2021). Potential and challenges to improve vehicle energy efficiency via V2X: Literature review. International journal of vehicle performance, 7(3–4), 244–265.
[72] Priyanka, E. B., Shankar, M. G., Tharun, S., Ravisankar, S., Saravanan, S. N., Kumar, B. B., & Pugazhenthi, C. (2021). Real-time performance analysis of multiple parameters of automotive sensor’s can data to predict vehicle driving efficiency. International journal of computing and digital system, 1337–1357.
[73] Mukhtar, A., Xia, L., & Tang, T. B. (2015). Vehicle detection techniques for collision avoidance systems: a review. IEEE transactions on intelligent transportation systems, 16(5), 2318–2338. https://ieeexplore.ieee.org/abstract/document/7066891/
[74] Shao, C., Tanaka, S., Nakayama, T., Hata, Y., & Muroyama, M. (2018). Electrical design and evaluation of asynchronous serial bus communication network of 48 sensor platform LSIs with single-ended I/O for integrated MEMS-LSI sensors. Sensors, 18(1), 231. https://www.mdpi.com/1424-8220/18/1/231
[75] Canzian, L., Demiryurek, U., & van der Schaar, M. (2015). Collision detection by networked sensors. IEEE transactions on signal and information processing over networks, 2(1), 1–15. https://ieeexplore.ieee.org/abstract/document/7342965/
[76] Nowakowski, C., Shladover, S. E., Cody, D., Bu, F., O’Connell, J., Spring, J., & Nelson, D. (2010). Cooperative adaptive cruise control: Testing drivers’ choices of following distances. https://escholarship.org/uc/item/58s2t0k3
[77] Silalahi, L. M., Alaydrus, M., Rochendi, A. D., & Muhtar, M. (2019). Design of tire pressure monitoring system using a pressure sensor base. Sinergi, 23(1), 70–78. https://core.ac.uk/download/pdf/291842707.pdf
[78] Velupillai, S., & Guvenc, L. (2007). Tire pressure monitoring [applications of control]. IEEE control systems magazine, 27(6), 22–25.
[79] Botaro, E. (2022). IoT-enabled environmental sensing for autonomous vehicle navigation and safety. Journal of bioinformatics and artificial intelligence, 2(2), 77–89. https://biotechjournal.org/index.php/jbai/article/view/42
[80] Nasser, N., Ali, A. Y., Karim, L., & Al-Helali, A. (2024). Enhancing mobility for the visually impaired with ai and iot-enabled mobile applications. ScienceOpen preprints. https://www.scienceopen.com/hosted-document?doi=10.14293/PR2199.000775.v2
[81] Khan, S. K., Shiwakoti, N., Stasinopoulos, P., & Chen, Y. (2020). Cyber-attacks in the next-generation cars, mitigation techniques, anticipated readiness and future directions. Accident analysis & prevention, 148, 105837. https://www.sciencedirect.com/science/article/pii/S0001457520316572
[82] Karnouskos, S., & Kerschbaum, F. (2017). Privacy and integrity considerations in hyperconnected autonomous vehicles. Proceedings of the IEEE, 106(1), 160–170. https://ieeexplore.ieee.org/abstract/document/8025389/
[83] Nižetić, S., Šolić, P., Gonzalez-De, D. L. I., & Patrono, L. (2020). Internet of things (IoT): opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877. https://doi.org/10.1016/j.jclepro.2020.122877
[84] Gudapalli, K., Md, A. P., Yagateela, S. O., Gongati, A., Adnan, M. M., Anandhi, R. J., & Kumar, A. (2024). Driving sustainability: iot sensor integration for efficient car ac control. E3S web of conferences (Vol. 507, p. 1049). EDP Sciences. https://www.e3s-conferences.org/articles/e3sconf/abs/2024/37/e3sconf_icftest2024_01049/e3sconf_icftest2024_01049.html
[85] Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206.
[86] Cheruvu, S., Kumar, A., Smith, N., & Wheeler, D. M. (2020). Demystifying internet of things security: successful iot device/edge and platform security deployment. Springer Nature.
[87] Tariq, N., Asim, M., Al-Obeidat, F., Zubair Farooqi, M., Baker, T., Hammoudeh, M., & Ghafir, I. (2019). The security of big data in fog-enabled iot applications including blockchain: a survey. Sensors, 19(8). DOI:10.3390/s19081788
[88] Khattak, H. A., Farman, H., Jan, B., & Din, I. U. (2019). Toward integrating vehicular clouds with IoT for smart city services. IEEE network, 33(2), 65–71. https://ieeexplore.ieee.org/abstract/document/8675174/
[89] Iqbal, J., Khan, M., Talha, M., Farman, H., Jan, B., Muhammad, A., & Khattak, H. A. (2018). A generic internet of things architecture for controlling electrical energy consumption in smart homes. Sustainable cities and society, 43, 443–450.
[90] Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE access, 8, 23022–23040. https://ieeexplore.ieee.org/abstract/document/8972389/