A Fuzzy Set-Based Context-Aware Decision Framework for Histopathological Image Classification in Tumor Microarrays

Authors

https://doi.org/10.22105/scfa.v2i2.57

Abstract

Histopathological image classification in Tumor Microarrays (TMAs) is a crucial component in modern oncopathology and personalized medicine. This study proposes a fuzzy set-based context-aware decision framework to enhance classification accuracy by incorporating contextual features such as image dimensions and tissue morphology indicators. Utilizing a dataset of 538 labeled histopathological images across five tumor classes (High-Grade Serous Carcinoma (HGSC), Endometrioid Carcinoma (EC), Clear Cell Carcinoma (CC), Low-Grade Serous Carcinoma (LGSC), and Mucinous Carcinoma (MC)), we developed a hybrid model that integrates fuzzy logic with decision theory and econometric tools. Our framework employs rule-based fuzzy inference systems, context attribute clustering, and performance evaluation using confusion matrices and precision-recall metrics. Econometric regression was performed to determine the influence of contextual features like image width and height on classification accuracy. Results revealed significant differences in class representation and spatial resolution, which were found to influence classifier confidence. The fuzzy system achieved a macro-average F1 score of 0.81, outperforming traditional models in low-data-class scenarios. This work demonstrates the viability of fuzzy logic in clinical image analysis, offering a promising decision support tool for pathologists and data scientists in biomedical diagnostics.

Keywords:

Fuzzy logic, Histopathology, Context-aware systems, Image classification, Tumor microarrays, Econometrics

References

  1. [1] Sese Faustino, M., Aasen, T., Ramon y Cajal Agüeras, S. J., Hernandez Losa, J., & Castellví Vives, J. (2020). Clinical implications of intratumor heterogeneity: Challenges and opportunities. Journal of molecular medicine, 98(2), 161–177. https://doi.org/10.1007/s00109-020-01874-2

  2. [2] Chhikara, B. S., & Parang, K. (2023). Global cancer statistics 2022: The trends projection analysis. Chemical biology letters, 10(1), 451. https://pubs.thesciencein.org/journal/index.php/cbl/article/view/451

  3. [3] Mohanty, A., Prusty, A. R., & Dasig, D. (2024). Pathway to detect cancer tumor by genetic mutation. In Computational intelligence in healthcare informatics (pp. 171–187). Springer. https://doi.org/10.1007/978-981-99-8853-2_11

  4. [4] Chia, J. L. L., He, G. S., Ngiam, K. Y., Hartman, M., Ng, Q. X., & Goh, S. S. N. (2025). Harnessing artificial intelligence to enhance global breast cancer care: A scoping review of applications, outcomes, and challenges. Cancers, 17(2), 197. https://doi.org/10.3390/cancers17020197

  5. [5] ŞAHiN, E., Arslan, N. N., & Özdemir, D. (2025). Unlocking the black box: An in-depth review on interpretability, explainability, and reliability in deep learning. Neural computing and applications, 37(2), 859–965. https://doi.org/10.1007/s00521-024-10437-2%0A%0A

  6. [6] Yang, Y., Zhang, H., Gichoya, J. W., Katabi, D., & Ghassemi, M. (2024). The limits of fair medical imaging AI in real-world generalization. Nature medicine, 30(10), 2838–2848. https://doi.org/10.1038/s41591-024-03113-4%0A%0A

  7. [7] Alberto, N. R. I., Alberto, I. R. I., Puyat, C. V. M., Antonio, M. A. R., Ho, F. D. V, Dee, E. C., … ., & Eala, M. A. B. (2023). Disparities in access to cancer diagnostics in ASEAN member countries. The lancet regional health--western pacific, 32. https://doi.org/10.1016/j.lanwpc.2022.100667

  8. [8] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

  9. [9] Horgan, D., Mia, R., Erhabor, T., Hamdi, Y., Dandara, C., & Lal, J. A. (2022). Fighting cancer around the world: A framework for action. Healthcare, 10(11), 2125. https://doi.org/10.3390/healthcare10112125

  10. [10] Istasy, P., Lee, W. S., Iansavichene, A., Upshur, R., Gyawali, B., Burkell, J., … ., & Chin-Yee, B. (2022). The impact of artificial intelligence on health equity in oncology: Scoping review. Journal of medical internet research, 24(11), e39748. https://doi.org/10.2196/39748

  11. [11] Jiang, N., Liu, X., Liu, H., Lim, E. T. K., Tan, C. W., & Gu, J. (2023). Beyond AI-powered context-aware services: the role of human-AI collaboration. Industrial management & data systems, 123(11), 2771–2802. https://doi.org/10.1108/IMDS-03-2022-0152

  12. [12] Dárrigo, C. (2023). The International congress of pathology & laboratory medicine 2023: Precision medicine: Revolutionizing pathology in genomic era, organised by the college of pathologists, academy of medicine of Malaysia and at world trade centre Kuala Lumpur on 20-22 Se. Malaysia journal pathology, 45(3), 481–566. http://www.mjpath.org.my/2023/v45n3/abstracts-of-ICPALM-2023.pdf

  13. [13] Bansal, P., Kumar, R., Kumar, A., & Dasig Jr, D. D. (2024). Artificial intelligence and communication techniques in Industry 5.0. CRC Press. https://B2n.ir/su2044

  14. [14] Arulkumar, V., Latha, C. P., & Dasig, D. (2019). Concept of implementing big data in smart city: Applications services data security in accordance with internet of things and AI. International journal of recent technology and engineering, 8(3), 6819–6825. http://www.doi.org/10.35940/ijrte.C5782.098319

  15. [15] Weitz, P. (2023). Artificial intelligence in histopathology image analysis for cancer precision medicine [Thesis]. https://www.proquest.com/openview/2acc1fdc24afccf9fd78e6bd8ebb9a43/1?pq-origsite=gscholar&cbl=2026366&diss=y

  16. [16] Ariyanto, A. D. P., Purwitasari, D., & Fatichah, C. (2024). A systematic review on semantic role labeling for information extraction in low-resource data. IEEE access, 12, 57917–57946. https://doi.org/10.1109/ACCESS.2024.3392370

  17. [17] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  18. [18] Gholamizadeh, K., Zarei, E., Omidvar, M., & Yazdi, M. (2022). Fuzzy sets theory and human reliability: Review, applications, and contributions. Linguistic methods under fuzzy information in system safety and reliability analysis, 414, 91–137. https://doi.org/10.1007/978-3-030-93352-4_5%0A%0A

  19. [19] Eappen, G., & Shankar, T. (2020). A survey on soft computing techniques for spectrum sensing in a cognitive radio network. SN computer science, 1(6), 352. https://doi.org/10.1007/s42979-020-00372-z%0A%0A

  20. [20] Khushaba, R. N., Kodagoda, S., Lal, S., & Dissanayake, G. (2010). Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE transactions on biomedical engineering, 58(1), 121–131. https://doi.org/10.1109/TBME.2010.2077291

  21. [21] Fu, Y., Jung, A. W., Torne, R. V., Gonzalez, S., Vöhringer, H., Shmatko, A., … ., & Gerstung, M. (2020). Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nature cancer, 1(8), 800–810. https://doi.org/10.1038/s43018-020-0085-8

  22. [22] Ahmed, M. I. B. (2023). Early detection of diabetic retinopathy utilizing advanced fuzzy logic techniques. Mathematical modelling of engineering problems, 10(6), 2086-2094. https://doi.org/10.18280/mmep.100619%0A

  23. [23] Medhi, J. P., Sandeep, R., Datta, P., & Nizami, T. K. (2023). Intelligent identification and classification of diabetic retinopathy using fuzzy inference system. Computer methods in biomechanics and biomedical engineering: imaging & visualization, 11(6), 2386–2399. https://doi.org/10.1080/21681163.2023.2235014

  24. [24] Madabhushi, A., & Lee, G. (2016). Image analysis and machine learning in digital pathology: Challenges and opportunities. Medical image analysis, 33, 170–175. https://doi.org/10.1016/j.media.2016.06.037

  25. [25] Rane, N., Choudhary, S., & Rane, J. (2023). Explainable artificial intelligence (XAI) in healthcare: Interpretable models for clinical decision support. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4637897

  26. [26] Asadi-Aghbolaghi, M., Farahani, H., Zhang, A., Akbari, A., Kim, S., & Chow, A. (2024). Machine learning-driven histotype diagnosis of ovarian carcinoma: insights from the OCEAN AI challenge. MedRxiv, 2004–2024. https://doi.org/10.1101/2024.04.19.24306099

  27. [27] Farahani, H., Boschman, J., Farnell, D., Darbandsari, A., Zhang, A., & Ahmadvand, P. (2022). Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Modern pathology, 35(12), 1983–1990. https://doi.org/10.1038/s41379-022-01146-z

  28. [28] Bashashati, A. (2023). UBC ovarian cancer subtype classification and outlier detection (UBC-OCEAN). https://kaggle.com/competitions/UBC-OCEAN

  29. [29] Bellavista, P., Bicocchi, N., Fogli, M., Giannelli, C., Mamei, M., & Picone, M. (2023). Requirements and design patterns for adaptive, autonomous, and context-aware digital twins in industry 4.0 digital factories. Computers in industry, 149, 103918. https://doi.org/10.1016/j.compind.2023.103918

  30. [30] Huggins, J. E., Krusienski, D., Vansteensel, M. J., Valeriani, D., Thelen, A., &Stavisky, S. (2022). Workshops of the eighth international brain-computer interface meeting: BCIs: The next frontier. Brain-computer interfaces, 9(2), 69–101. https://doi.org/10.1080/2326263X.2021.2009654

  31. [31] Oberste, L., & Heinzl, A. (2022). User-centric explainability in healthcare: a knowledge-level perspective of informed machine learning. IEEE transactions on artificial intelligence, 4(4), 840–857. https://doi.org/10.1109/TAI.2022.3227225

  32. [32] Ieracitano, C., Mammone, N., Versaci, M., Varone, G., Ali, A. R., & Armentano, A. (2022). A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing, 481, 202–215. https://doi.org/10.1016/j.neucom.2022.01.055

  33. [33] Tursunalieva, A., Alexander, D. L. J., Dunne, R., Li, J., Riera, L., & Zhao, Y. (2024). Making sense of machine learning: A review of interpretation techniques and their applications. Applied sciences, 14(2), 496. https://doi.org/10.3390/app14020496

  34. [34] Tehrani, A. G. (2024). Interpretable machine learning (IML) methods: Classification and solutions for transparent models [Thesis]. https://uwspace.uwaterloo.ca/bitstreams/327136f0-d537-4a11-92ef-1ee0fc04ab41/download

  35. [35] Astruc, G., Dufour, N., Siglidis, I., Aronssohn, C., Bouia, N., Fu, S., … ., & Landrieu, L. (2024). Openstreetview-5m: The many roads to global visual geolocation. Proceedings of the IEEE/cvf conference on computer vision and pattern recognition (pp. 21967–21977). IEEE. https://doi.org/10.48550/arXiv.2404.18873

  36. [36] Kumar, D. A., Venkatanarayana, M., & Murthy, V. S. S. (2023). Object-based image analysis. In Encyclopedia of mathematical geosciences (pp. 1008–1012). Springer. https://doi.org/10.1007/978-3-030-85040-1_229

  37. [37] Navin, K., & Krishnan, M. (2024). Fuzzy rule based classifier model for evidence based clinical decision support systems. Intelligent systems with applications, 22, 200393. https://doi.org/10.1016/j.iswa.2024.200393

  38. [38] Germanese, D., Colantonio, S., Del Coco, M., Carcagnì, P., & Leo, M. (2023). Computer vision tasks for ambient intelligence in children’s health. Information, 14(10), 548. https://doi.org/10.3390/info14100548

  39. [39] Júnior, J. S. S., Gaspar, C., Mendes, J., & Premebida, C. (2024). Assessing interpretability of data-driven fuzzy models: Application in industrial regression problems. Expert systems, 41(12), e13710. https://doi.org/10.1111/exsy.13710

Published

2025-05-23

How to Cite

A Fuzzy Set-Based Context-Aware Decision Framework for Histopathological Image Classification in Tumor Microarrays. (2025). Soft Computing Fusion With Applications , 2(2), 106-120. https://doi.org/10.22105/scfa.v2i2.57

Similar Articles

11-20 of 21

You may also start an advanced similarity search for this article.