Multiclass Blood Cell Classification Using Contourlet Transform and Metaheuristic-Optimized Deep Features with Clustering-Based Decision Making

Authors

  • Omid Eslamifar * Department of Electrical Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.
  • Mohammadreza Soltani Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran.
  • Seyed Mohammad Jalal Rastegar Fatemi Department of Electrical Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

https://doi.org/10.22105/scfa.v1i4.58

Abstract

Analysis by pathologists is time-consuming and error-prone due to the similarity among cell types. To address this, we propose a hybrid method combining deep learning and contourlet transform for multiclass blood cell classification. Features are optimized using a metaheuristic algorithm inspired by African vultures. Experimental results on the Jiangxi Tecom dataset demonstrate high performance, achieving classification accuracies of up to 97% for specific cell types. This approach improves diagnostic reliability by leveraging feature-level fusion and clustering-based decision making.

Keywords:

White blood cell, Classification, Contourlet transform, Recurrent neural network, Precision

References

  1. [1] Alqahtani, A., Alsubai, S., Sha, M., Khan, M., Alhaisoni, M., & Naqvi, S. (2023). Automated white blood cell disease recognition using lightweight deep learning. Computer systems science and engineering, 46(1), 107–123. http://dx.doi.org/10.32604/csse.2023.030727

  2. [2] Ramoser, H., Laurain, V., Bischof, H., & Ecker, R. (2005). Leukocyte segmentation and classification in blood-smear images. 2005 IEEE engineering in medicine and biology 27th annual conference (pp. 3371–3374). IEEE. https://doi.org/10.1109/IEMBS.2005.1617200

  3. [3] Ghaderzadeh, M., Asadi, F., Hosseini, A., Bashash, D., Abolghasemi, H., & Roshanpour, A. (2021). Machine learning in detection and classification of leukemia using smear blood images: A systematic review. Scientific programming, 2021(1), 9933481. https://doi.org/10.1155/2021/9933481

  4. [4] Harrison, C. J., & Johansson, B. (2015). Acute lymphoblastic leukemia. In Cancer cytogenetics: Chromosomal and molecular genetic aberrations of tumor cells (pp. 198–251). Wiley Online Library. https://doi.org/10.1002/9781118795569.ch10

  5. [5] Simionato, G., Hinkelmann, K., Chachanidze, R., Bianchi, P., Fermo, E., van Wijk, R., … ., & Quint, S. (2021). Red blood cell phenotyping from 3D confocal images using artificial neural networks. PLoS computational biology, 17(5), e1008934. https://doi.org/10.1371/journal.pcbi.1008934

  6. [6] Mittal, A., Dhalla, S., Gupta, S., & Gupta, A. (2022). Automated analysis of blood smear images for leukemia detection: A comprehensive review. Association for computing machinery computing surveys (CSUR), 54(11s), 1–37. https://doi.org/10.1145/3514495

  7. [7] Raji, H., Tayyab, M., Sui, J., Mahmoodi, S. R., & Javanmard, M. (2022). Biosensors and machine learning for enhanced detection, stratification, and classification of cells: A review. Biomedical microdevices, 24(3), 26. https://doi.org/10.1007/s10544-022-00627-x

  8. [8] Yentrapragada, D. (2023). Deep features based convolutional neural network to detect and automatic classification of white blood cells. Journal of ambient intelligence and humanized computing, 14(7), 9191–9205. https://doi.org/10.1007/s12652-022-04422-7

  9. [9] Niranjana, R., Ravi, A., Meena, A., Khaashwini, M. S., Kavya, T., & Krishnan, R. S. (2023). Blood cell counting and malaria pathogen detection using convolutional neural network. 2023 4th international conference on electronics and sustainable communication systems (ICESC) (pp. 1120–1127). IEEE. https://doi.org/10.1109/ICESC57686.2023.10193462

  10. [10] Soltanzadeh, R., & Rabbani, H. (2010). Classification of three types of red blood cells in peripheral blood smear based on morphology. IEEE 10th international conference on signal processing proceedings (pp. 707–710). IEEE. https://doi.org/10.1109/ICOSP.2010.5655754

  11. [11] Tiwari, P., Qian, J., Li, Q., Wang, B., Gupta, D., Khanna, A., … ., & de Albuquerque, V. H. C. (2018). Detection of subtype blood cells using deep learning. Cognitive systems research, 52, 1036–1044. https://doi.org/10.1016/j.cogsys.2018.08.022

  12. [12] Bhavani, M., & Durgadevi, M. (2023). Streamlined classification of microscopic blood cell images. International journal of intelligent systems and applications in engineering, 11(1s), 57–62. https://www.ijisae.org/index.php/IJISAE/article/view/2477

  13. [13] Elhassan, T. A., Mohd Rahim, M. S., Siti Zaiton, M. H., Swee, T. T., Alhaj, T. A., Ali, A., & Aljurf, M. (2023). Classification of atypical white blood cells in acute myeloid leukemia using a two-stage hybrid model based on deep convolutional autoencoder and deep convolutional neural network. Diagnostics, 13(2), 196. https://doi.org/10.3390/diagnostics13020196

  14. [14] Ahmad, R., Awais, M., Kausar, N., & Akram, T. (2023). White blood cells classification using entropy-controlled deep features optimization. Diagnostics, 13(3), 352. https://doi.org/10.3390/diagnostics13030352

  15. [15] Sallam, N. M., Saleh, A. I., Arafat Ali, H., & Abdelsalam, M. M. (2023). An efficient EGWO algorithm as feature selection for B-ALL diagnoses and its subtypes classification using peripheral blood smear images. Alexandria engineering journal, 68, 39–66. https://doi.org/10.1016/j.aej.2023.01.004

  16. [16] Zheng, X., Tang, P., Ai, L., Liu, D., Zhang, Y., & Wang, B. (2023). White blood cell detection using saliency detection and CenterNet: A two-stage approach. Journal of biophotonics, 16(3), e202200174. https://doi.org/10.1002/jbio.202200174

  17. [17] Salehi, R., Sadafi, A., Gruber, A., Lienemann, P., Navab, N., Albarqouni, S., & Marr, C. (2022). Unsupervised cross-domain feature extraction for single blood cell image classification. Medical image computing and computer assisted intervention - miccai 2022 (pp. 739–748). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-16437-8_71

  18. [18] Ghaderzadeh, M., Aria, M., Hosseini, A., Asadi, F., Bashash, D., & Abolghasemi, H. (2022). A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images. International journal of intelligent systems, 37(8), 5113–5133. https://doi.org/10.1002/int.22753

  19. [19] Hosseini, A., Eshraghi, M. A., Taami, T., Sadeghsalehi, H., Hoseinzadeh, Z., Ghaderzadeh, M., & Rafiee, M. (2023). A mobile application based on efficient lightweight CNN model for classification of B-ALL cancer from non-cancerous cells: A design and implementation study. Informatics in medicine unlocked, 39, 101244. https://doi.org/10.1016/j.imu.2023.101244

  20. [20] Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & industrial engineering, 158, 107408. https://doi.org/10.1016/j.cie.2021.107408

Published

2024-10-14

How to Cite

Multiclass Blood Cell Classification Using Contourlet Transform and Metaheuristic-Optimized Deep Features with Clustering-Based Decision Making. (2024). Soft Computing Fusion With Applications , 1(4), 186-198. https://doi.org/10.22105/scfa.v1i4.58

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.