Soft Intersection Almost Bi-quasi Ideals of Semigroups

Authors

  • Aslıhan Sezgin Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye.
  • Aleyna İlgin Department of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye.

DOI:

https://doi.org/10.22105/dm20a128

Keywords:

soft set, semigroup, (almost) bi-quasi ideals, soft intersection (almost) bi-quasi ideals

Abstract

The concept of bi-quasi ideal generalizes the notions of bi-ideals and quasi-ideals in a semigroup; similarly, the soft intersection bi-quasi ideal generalizes the concepts of soft intersection bi-ideals and soft intersection quasi-ideals in a semigroup. In this paper, we introduce the concept of  soft intersection almost bi-quasi ideal and its generalized concept, soft intersection weakly almost bi-quasi ideals, in a semigroup. In contrast to the soft intersection ideal theory, we demonstrate that every soft intersection almost bi-quasi ideal is also a soft intersection almost ideal and a soft intersection almost bi-ideal. Additionally, we show that every idempotent soft intersection almost bi-quasi ideal is a soft intersection almost subsemigroup, a soft intersection almost weak interior ideal, a soft intersection almost tri-ideal, and a soft intersection almost tri-bi-ideal. Furthermore, we derive several interesting relationships regarding minimality, primeness, semiprimeness, and strongly primeness between almost bi-quasi ideals and soft intersection almost bi-quasi ideals with the proven theorem stating that if a nonempty set  is an almost bi-quasi ideal, then its soft characteristic function is also a soft intersection almost bi-quasi ideal, and vice versa.

References

‎[1] ‎ Good, R. A., & Hughes, D. R. (1952). Associated groups for a semigroup. Bull. amer. math. soc, 58(6), 624–‌‎625.‎

‎[2] ‎ Steinfeld, O. (1956). Uher die tri ideals, Von halbgruppend Publ. Math. debrecen, 4, 262–275.‎

‎[3] ‎ Grošek, O., & Satko, L. (1980). A new notion in the theory of semigroup. Semigroup forum, 20(1), 233–‌‎240. DOI: 10.1007/BF02572683‎

‎[4] ‎ Bogdanovic, S. (1981). Semigroups in which some bi-ideal is a group. Review of research faculty of ‎science-university of novi sad, 11, 261–266. ‎https://sites.dmi.uns.ac.rs/nsjom/Papers/11/NSJOM_11_261_266.pdf

‎[5] ‎ Wattanatripop, K., Chinram, R., & Changphas, T. (2018). Quasi-A-ideals and fuzzy A-ideals in ‎semigroups. Journal of discrete mathematical sciences and cryptography, 21(5), 1131–1138. ‎DOI:10.1080/09720529.2018.1468608‎

‎[6] ‎ Kaopusek, N., Kaewnoi, T., & Chinram, R. (2020). On almost interior ideals and weakly almost ‎interior ideals of semigroups. Journal of discrete mathematical sciences and cryptography, 23(3), 773–778. ‎DOI:10.1080/09720529.2019.1696917‎

‎[7] ‎ Iampan, A., Chinram, R., & Petchkaew, P. (2021). A note on almost subsemigroups of semigroups. ‎International journal of mathematics and computer science, 16(4), 1623–1629.‎

‎[8] ‎ Chinram, R., & Nakkhasen, W. (2022). Almost bi-quasi-interior ideals and fuzzy almost bi-quasi-‎interior ideals of semigroups. Journal of mathematics and computer science, 26(2), 128–136. ‎DOI:10.22436/jmcs.026.02.03‎

‎[9] ‎ Gaketem, T. (2022). Almost bi interior ideal in semigroups and their fuzzifications. European journal of ‎pure and applied mathematics, 15(1), 281–289. DOI:10.29020/nybg.ejpam.v15i1.4279‎

‎[10] ‎ Gaketem, T., & Chinram, R. (2023). Almost bi-quasi-ideals and their fuzzifications in semigroups. ‎Annals of the university of craiova, mathematics and computer science series, 50(2), 342–352. ‎DOI:10.52846/ami.v50i2.1708‎

‎[11] ‎ Wattanatripop, K., Chinram, R., & Changphas, T. (2018). Fuzzy almost bi-ideals in semigroups. ‎International journal of mathematics and computer science, 13(1), 51–58.‎

‎[12] ‎ Krailoet, W., Simuen, A., Chinram, R., & Petchkaew, P. (2021). A note on fuzzy almost interior ideals ‎in semigroups. International journal of mathematics and computer science, 16(2), 803–808.‎

‎[13] ‎ Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4-5), ‌‎19–31. https://doi.org/10.1016/S0898-1221(99)00056-5‎

‎[14] ‎ Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. ‎Computers and mathematics with applications, 61(9), 2647–2654. DOI:10.1016/j.camwa.2011.03.011‎

‎[15] ‎ Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: extended difference of soft ‎sets. Journal of new theory, (27), 33–42. https://dergipark.org.tr/en/pub/jnt/issue/43609/535589‎

‎[16] ‎ Stojanović, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. ‎Vojnotehnički glasnik/military technical courier, 69(4), 779–791.‎

‎[17] ‎ Sezgin, A., Aybek, F. N. (2023). A new soft set operation: complementary soft binary piecewise ‎gamma operation. Matrix science mathematic, 7(1), 27–45. DOI:10.54286/ikjm.1304566‎

‎[18] ‎ Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023). A new soft set operation: complementary soft binary ‎piecewise intersection (∩) operation. Black sea journal of engineering and science, 6(4), 330–346.‎

‎[19] ‎ Sezgin, A., Aybek, F., & Güngör, N. B. (2023). New soft set operation: complementary soft binary ‎piecewise union operation. Acta informatica malaysia, 7(1), 38–53.‎

‎[20] ‎ SEZGİN, A., & DEMİRCİ, A. M. (2023). A new soft set operation: complementary soft binary piecewise ‎star (*) operation. Ikonion journal of mathematics, 5(2), 24–52. DOI:10.54286/ikjm.1304566‎

‎[21] ‎ Sezgin, A., & Yavuz, E. (2023). A new soft set operation: complementary soft binary piecewise lamda ‌‎(λ) operation. Sinop üniversitesi fen bilimleri dergisi, 8(2), 101–133.‎

‎[22] ‎ Sezgin, A., & Yavuz, E. (2023). A new soft set operation: soft binary piecewise symmetric difference ‎operation. Necmettin erbakan üniversitesi fen ve mühendislik bilimleri dergisi, 5(2), 189–208.‎

‎[23] ‎ Sezgin, A., & Cagman, N. (2024). A new soft set operation: complementary soft binary piecewise ‎difference () operation. Osmaniye korkut ata üniversitesi fen bilimleri enstitüsü dergisi, 7(1), 58–94.‎

‎[24] ‎ Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni--int decision making. European journal of ‎operational research, 207(2), 848–855.‎

‎[25] ‎ Çaǧman, N., Çitak, F., & Aktaş, H. (2012). Soft int-group and its applications to group theory. Neural ‎computing and applications, 21(SUPPL. 1), 151–158. DOI:10.1007/s00521-011-0752-x

‎[26] ‎ Sezer, A. S., Agman, N., Atagün, A. O., Ali, M. I., & Turkmen, E. (2015). Soft intersection semigroups, ‎ideals and bi-ideals; a new application on semigroup theory I. Filomat, 29(5), 917–946. ‎DOI:10.2298/FIL1505917S

‎[27] ‎ Sezer, A. S., Çaǧman, N., & Atagün, A. O. (2014). Soft intersection interior ideals, quasi-ideals and ‎generalized bi-ideals; a new approach to semigroup theory II. Journal of multiple-valued logic and soft ‎computing, 23(1–2), 161–207.‎

‎[28] ‎ Sezgin, A., & Orbay, M. (2022). Analysis of semigroups with soft intersection ideals. Acta universitatis ‎sapientiae, mathematica, 14(1), 166–210. DOI:10.2478/ausm-2022-0012‎

‎[29] ‎ Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of ‎mathematics, 26(3), 503–517.‎

‎[30] ‎ Jana, C., Pal, M., Karaaslan, F., & Sezgin, A. (2019). (α, β)-soft intersectional rings and ideals with their ‎applications. New mathematics and natural computation, 15(2), 333–350. DOI:10.1142/S1793005719500182‎

‎[31] ‎ Mustuoglu, E., Sezgin, A., & Kaya, Z. (2016). Some characterizations on soft uni-groups and normal ‎soft uni-groups. International journal of computer applications, 155(10), 1–8. DOI:10.5120/ijca2016912412‎

‎[32] ‎ Sezer, A. S., Cagman, N., & Atagün, A. O. (2015). Uni-soft substructures of groups. Annals of fuzzy ‎mathematics and informatics, 9(2), 235–246.‎

‎[33] ‎ Sezer, A. S. (2014). Certain characterizations of LA-semigroups by soft sets. Journal of intelligent and ‎fuzzy systems, 27(2), 1035–1046. DOI:10.3233/IFS-131064‎

‎[34] ‎ Özlü, Ş., & Sezgin, A. (2020). Soft covered ideals in semigroups. Acta universitatis sapientiae, mathematica, ‌‎12(2), 317–346. DOI:10.2478/ausm-2020-0023‎

‎[35] ‎ Atagun, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. ‎Mathematical sciences letters, 7(1), 37–42. DOI:10.18576/msl/070106‎

‎[36] ‎ Sezgin, A. (2018). A new view on AG-groupoid theory via soft sets for uncertainty modeling. Filomat, ‌‎32(8), 2995–3030. DOI:10.2298/FIL1808995S‎

‎[37] ‎ Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via ‎soft uni-int product. Applied soft computing journal, 54, 366–392. DOI:10.1016/j.asoc.2016.10.004‎

‎[38] ‎ Sezgin, A., Atagün, A. O., Çaǧman, N., & Demir, H. (2022). On near-rings with soft union ideals and ‎applications. New mathematics and natural computation, 18(2), 495–511. DOI:10.1142/S1793005722500247‎

‎[39] ‎ Rao, M. M. K. (2018). Bi-interior ideals of semigroups. Discussiones mathematicae-general algebra and ‎applications, 38(1), 69. DOI:10.7151/dmgaa.1283‎

‎[40] ‎ Rao, M. M. K. (2018). A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup. ‎Mathematica morovica, 22(2), 103–115.‎

‎[41] ‎ Rao, M. M. K. (2020). Left bi-quasi ideals of semigroups. Southeast asian bulletin of mathematics, 44(3), ‌‎369–376.‎

‎[42] ‎ Rao, M. M. K. (2020). Quasi-interior ideals and weak-interior ideals. Asia Pacific journal of Mathematics, 7, ‌‎7–21. https://apjm.apacific.org/PDFs/7-21.pdf‎

‎[43] Baupradist, S., Chemat, B., Palanivel, K., & Chinram, R. (2021). Essential ideals and essential fuzzy ‎ideals in semigroups. Journal of discrete mathematical sciences and cryptography, 24(1), 223–233. ‎DOI:10.1080/09720529.2020.1816643‎

‎[44] Sezgin, A., Kocakaya, F. Z. (2024). Soft intersection bi-quasi ideals of semigroups. Manipal journal of ‎science and technology, in press. ‎‎[45] Feng, F., Jun, Y. B., & Zhao, X. (2008). Soft semirings. Computers and mathematics with applications, 56(10), ‌‎2621–2628. DOI:10.1016/j.camwa.2008.05.011‎

‎[46] Sezgin, A., & İlgin, A. (2024). Soft intersection almost subsemigroups of semigroups. International ‎journal of mathematics and physics, 15(1), 13–20. DOI: 10.26577/ijmph.2024v15i1a2‎

‎[47] Sezgin, A., & İlgin, A. (2024). Soft intersection almost ideals of semigroups. Journal of innovative ‎engineering and natural science, 4(2), 466–481. DOI:10.61112/jiens.1464344‎

‎[48] Sezgin, A., & Onur, B. (2024). Soft intersection almost bi-ideals of semigroups. Systemic analytics, 2(1), ‌‎95–105. DOI:10.31181/sa21202415‎

‎[49] Sezgin, A., & İlgin, A. (2024). Soft intersection almost weak interior ideals of semigroups. Journal of ‎natural sciences and mathematics of UT, in press.‎

‎[50] Sezgin, A., & İlgin, A. (2024). Soft intersection almost tri-ideals of semigroups. E-jurnal matematica, in ‎press.‎

‎[51] Sezgin, A., İlgin, A., & Atagün, A. O. (2024). Soft intersection almost tri-bi-ideals of semigroups. Science ‎& technology asia, in press.‎

‎[52] Pant, S., Dagtoros, K., Kholil, M. I., & Vivas, A. (2024). Matrices: peculiar determinant property. ‎Optimum science journal, (1), 1–7. https://www.optimumscience.org/index.php/pub/article/view/9‎

Published

2024-09-02

How to Cite

Soft Intersection Almost Bi-quasi Ideals of Semigroups. (2024). Soft Computing Fusion With Applications , 1(1), 27-42. https://doi.org/10.22105/dm20a128

Similar Articles

You may also start an advanced similarity search for this article.