Note for Intuitionistic HyperRough Set, One–directional S–Hyperrough Set, Tolerance Hyperrough Set,and Dynamic Hyperrough Set

Authors

https://doi.org/10.22105/scfa.vi.51

Abstract

Various set-theoretic models have been proposed to handle uncertainty, including Fuzzy Sets, Intuitionistic Fuzzy Sets, Neutrosophic Sets, and Soft Sets.  Rough set theory provides a mathematical framework for approximating subsets using lower and upper bounds defined by equivalence relations, effectively capturing uncertainty in classification and data analysis. Building on these foundational ideas, further generalizations such as Hyperrough Sets and Superhyperrough Sets have been developed.  
In this paper, we introduce newly defined concepts of the Intuitionistic Hyperrough Set, One–directional S–Hyperrough Set, Tolerance Hyperrough Set, and Dynamic Hyperrough Set. These are extended versions of the Intuitionistic Rough Set, One–directional S–rough Set, Tolerance Rough Set, and Dynamic Rough Set, respectively, constructed using the framework of Hyperrough Sets. Additionally, we explore extensions constructed using the Superhyperrough Set framework.  

Keywords:

Rough set, HyperRough Set, SuperHyperRough set, Intuitionistic rough set, One-directional S-rough set, Tolerance rough set, Dynamic rough set

References

  1. [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  2. [2] Atanassov, K., & Gargov, G. (1998). Elements of intuitionistic fuzzy logic. Part I. Fuzzy sets and systems, 95(1), 39-52.

  3. [3] https://doi.org/10.1016/S0165-0114(96)00326-0

  4. [4] Smarandache, F. (1998). Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis.

  5. [5] https://philpapers.org/rec/Smannp

  6. [6] Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1- 141). American Research

  7. [7] Press. http://dx.doi.org/10.5281/zenodo.49174

  8. [8] Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4-5), 19-31.

  9. [9] https://doi.org/10.1016/S0898-1221(99)00056-5

  10. [10] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4-5), 555-

  11. [11] https://doi.org/10.1016/S0898-1221(03)00016-6

  12. [12] Pawlak, Z. (1982). Rough sets. International journal of computer and information sciences, 11, 341–356.

  13. [13] https://doi.org/10.1007/BF01001956

  14. [14] Broumi, S., Smarandache, F., & Dhar, M. (2014). Rough neutrosophic sets. Infinite Study, 32, 493-502.

  15. [15] http://dx.doi.org/10.5281/zenodo.30310

  16. [16] Pawlak, Z., Wong, S. K. M., & Ziarko, W. (1988). Rough sets: Probabilistic versus deterministic approach. International

  17. [17] Journal of Man-Machine Studies, 29(1), 81-95. https://doi.org/10.1016/S0020-7373(88)80032-4

  18. [18] Jech, T. (2003). Set theory: The third millennium edition, revised and expanded. Springer. https://doi.org/10.1007/3-

  19. [19] -44761-X

  20. [20] Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics & Systems, 29(7), 661-688.

  21. [21] https://doi.org/10.1080/019697298125470

  22. [22] Beaubouef, T., & Petry, F. E. (2007). Intuitionistic rough sets for database applications. In Transactions on Rough Sets

  23. [23] VI: Commemorating the Life and Work of Zdzisław Pawlak, Part I (pp. 26-30). Berlin, Heidelberg: Springer Berlin Heidelberg.

  24. [24] https://doi.org/10.1007/978-3-540- 71200-8_2

  25. [25] Beaubouef, T., & Petry, F. (2013). Information systems uncertainty design and implementation combining: Rough,

  26. [26] fuzzy, and intuitionistic approaches. In Flexible approaches in data, information and knowledge management (pp. 143-164).

  27. [27] Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-00954-4_7

  28. [28] Beaubouef, T., & Petry, F. E. (2009). Uncertainty modeling for database design using intuitionistic and rough set theory.

  29. [29] Journal of Intelligent & Fuzzy Systems, 20(3), 105-117. https://doi.org/10.3233/IFS-2009-0422

  30. [30] Zou, W., Chen, P., & Huang, J. (2011). Digital image information disguising technology research based on S-rough sets. 2011

  31. [31] rd international conference on computer research and development (pp. 183-187). IEEE.

  32. [32] https://doi.org/10.1109/ICCRD.2011.5763999

  33. [33] Dongya, L., Xuefang, R., & Kaiquan, S. (2009). Rough law generation and its separation- recognition. Journal of systems engineering

  34. [34] and electronics, 20(6), 1239-1246. https://ieeexplore.ieee.org/abstract/document/6074575

  35. [35] Jinming, Q., & Li, Z. (2009). F-interference law generation and its feature recognition. Journal of systems engineering and

  36. [36] electronics, 20(4), 777-783. https://ieeexplore.ieee.org/document/6074502

  37. [37] Xiumei, H., Haiyan, F., & Kaiquan, S. (2008). S-rough sets and the discovery of F-hiding knowledge. Journal of systems engineering

  38. [38] and electronics, 19(6), 1171-1177. https://doi.org/10.1016/S1004-4132(08)60215-7

  39. [39] Hu, Y. C. (2015). Flow-based tolerance rough sets for pattern classification. Applied soft computing, 27, 322-331.

  40. [40] https://doi.org/10.1016/j.asoc.2014.11.021

  41. [41] Stepaniuk, J., & Kretowski, M. (1995). Decision system based on tolerance rough sets. Proceedings of the Fourth International

  42. [42] Workshop on Intelligent Information Systems (pp. 62- 73). Augustow, Poland. https://B2n.ir/eh4291

  43. [43] Hu, Y. C. (2016). Tolerance rough sets for pattern classification using multiple grey single- layer perceptrons.

  44. [44] Neurocomputing, 179, 144-151. https://doi.org/10.1016/j.neucom.2015.11.066

  45. [45] Mac Parthalain, N., & Shen, Q. (2009). Exploring the boundary region of tolerance rough sets for feature selection. Pattern

  46. [46] recognition, 42(5), 655-667. https://doi.org/10.1016/j.patcog.2008.08.029

  47. [47] Li, D. Y., & Hu, B. Q. (2007, August). A kind of dynamic rough sets. Fourth International Conference on Fuzzy Systems

  48. [48] and Knowledge Discovery (FSKD 2007) (pp. 79-85). IEEE. https://doi.org/10.1109/FSKD.2007.51

  49. [49] Moudani, W., Shahin, A., Chakik, F., & Mora-Camino, F. (2011). Dynamic rough sets features reduction. International journal

  50. [50] of computer science and information security, 9(4), 1. https://enac.hal.science/hal-01021589/

  51. [51] Longshaw, T., & Haines, S. (1995). Dynamic rough sets. Proceedings of 3rd International symposium on uncertainty modeling

  52. [52] and analysis and annual conference of the north american fuzzy information processing society (pp. 292-295). IEEE.

  53. [53] https://doi.org/10.1109/ISUMA.1995.527709

  54. [54] Fujita, T. (2025). Short introduction to rough, hyperrough, superhyperrough, treerough. In Advancing uncertain

  55. [55] combinatorics through graphization, hyperization, and uncertainization: Fuzzy, neutrosophic, soft, rough, and beyond: Fifth volume:

  56. [56] Various super-hyperconcepts (Collected papers) (pp. 394). Infinite Study . https://www.researchgate.net/publication/

  57. [57] Fujita, T., & Smarandache, F. (2025). A concise introduction to hyperfuzzy, hyperneutrosophic, hyperplithogenic, hypersoft,

  58. [58] and hyperrough sets with practical examples. Neutrosophic sets and systems, 80, 609-631.

  59. [59] https://doi.org/10.5281/zenodo.14759385

  60. [60] Fujita, T. (2024). Hyperrough cubic set and superhyperrough cubic set. Prospects for applied mathematics and data analysis,

  61. [61] (1), 28-35. http://dx.doi.org/10.54216/PAMDA.040103

  62. [62] Fujita, T.(2025). Advancing uncertain combinatorics through graphization, hyperization, and uncertainization: Fuzzy,

  63. [63] neutrosophic, soft, rough, and beyond. Biblio Publishing. https://www.researchgate.net/publication/386082978

  64. [64] Fujita, T. (2025). Neighborhood hyperrough set and neighborhood superhyperrough set. Pure mathematics for theoretical

  65. [65] computer science, 5(1), 34-47. http://dx.doi.org/10.54216/PMTCS.050104

  66. [66] Diestel, R. (2025). Graph theory. Springer Nature. https://doi.org/10.1007/978-3-662- 70107-2

  67. [67] Fujita, T., & Singh, P. K. (2025). Hyperfuzzy graph and hyperfuzzy hypergraph. Journal of neutrosophic and fuzzy systems

  68. [68] (JNFS), 10(01), 01-13. http://dx.doi.org/10.54216/JNFS.100101

  69. [69] Bretto, A. (2013). Hypergraph theory. An introduction. Cham: Springer. https://doi.org/10.1007/978-3-319-00080-0

  70. [70] Smarandache, F. (2020). Extension of hypergraph to n-superhypergraph and to plithogenic n-superhypergraph, and extension

  71. [71] of hyperalgebra to n-ary (Classical-/Neutro-/Anti-) HyperAlgebra. Infinite Study. https://www.researchgate.net/publication/

  72. [72] Smarandache, F. (2022). Introduction to the n-SuperHyperGraph-the most general form of graph today. Infinite Study.

  73. [73] http://dx.doi.org/10.5281/zenodo.3783103

Published

2025-08-05

How to Cite

Note for Intuitionistic HyperRough Set, One–directional S–Hyperrough Set, Tolerance Hyperrough Set,and Dynamic Hyperrough Set. (2025). Soft Computing Fusion With Applications , 2(3), 157-183. https://doi.org/10.22105/scfa.vi.51

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.