Algorithms for Clustering Fuzzy Soft Sets Based on Their Energies
Abstract
In this paper, we continue the study of fuzzy soft sets and their applications. Besides the significance of energy and $\lambda$-energy of fuzzy soft sets for developing decision-making algorithms, these energies are also crucial for forming data clustering algorithms. The main result of this work is the development of data clustering algorithms based on the energies of fuzzy soft sets.
Keywords:
Fuzzy soft set, Energy, Singular valuesReferences
- [1] Molodtsov, D. (1999). Soft set theory—First results. Computers & mathematics with applications, 37(4), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
- [2] Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009
- [3] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6
- [4] Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: Extended difference of soft sets. Journal of new theory, (27), 33–42. https://dergipark.org.tr/en/pub/jnt/issue/43609/535589
- [5] Sezgin, A., & Atagün, A. O. (2011). On operations of soft sets. Computers & mathematics with applications, 61(5), 1457–1467. https://doi.org/10.1016/j.camwa.2011.01.018
- [6] Stojanović, N., & Joksimović, M. B. (2022). Soft outer measure and soft premeasure. Filomat, 36(6), 2129-2141. http://dx.doi.org/10.2298/FIL2206129S
- [7] Stojanović, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779–791. https://doi.org/10.5937/vojtehg69-33655
- [8] Maji, P. K., Biswas, R., & Roy, A. R. (2001). Fuzzy soft sets. J. fuzzy math, 9(3), 598–602. https://www.sid.ir/paper/633097/en
- [9] Çağman, N., Çıtak, F., & Enginoğlu, S. (2010). Fuzzy parameterized fuzzy soft set theory and its applications. Turkish journal of fuzzy systems, 1(1), 21–35. https://www.researchgate.net/publication/229041420
- [10] Cagman, N., Enginoglu, S., & Citak, F. (2011). Fuzzy soft set theory and its applications. Iranian journal of fuzzy systems, 8(3), 137–147. https://www.researchgate.net/publication/259895126
- [11] Feng, F., Jun, Y. B., Liu, X., & Li, L. (2010). An adjustable approach to fuzzy soft set based decision making. Journal of computational and applied mathematics, 234(1), 10–20. https://doi.org/10.1016/j.cam.2009.11.055
- [12] Liu, Z., Qin, K., & Pei, Z. (2017). A method for fuzzy soft sets in decision-making based on an ideal solution. Symmetry, 9(10), 246. https://doi.org/10.3390/sym9100246
- [13] Mudrić-Staniškovski, L., Djurovic, L., & Stojanović, N. (2024). Energy of a fuzzy soft set and its application in decision-making. Iranian journal of fuzzy systems, 21(2), 35–49. http://dx.doi.org/10.22111/ijfs.2024.46797.8243
- [14] Rezaei, K., & Rezaei, H. (2019). New distance and similarity measures for hesitant fuzzy soft sets. Iranian journal of fuzzy systems, 16(6), 159–176. https://doi.org/10.22111/ijfs.2019.5026
- [15] Gutman, I. (1978). The energy of a graph, 103, 1–22.
- [16] Gutman, I., Kiani, D., Mirzakhah, M., & Zhou, B. (2009). On incidence energy of a graph. Linear algebra and its applications, 431(8), 1223–1233. https://doi.org/10.1016/j.laa.2009.04.019
- [17] Jooyandeh, R., Kiani, D., & Mirzakhah, M. (2009). Incidence energy of a graph. Match (Mulheim an der ruhr, germany), 62, 561–572. https://www.researchgate.net/publication/235676733
- [18] Nikiforov, V. (2007). The energy of graphs and matrices. Journal of mathematical analysis and applications, 326(2), 1472–1475. https://doi.org/10.1016/j.jmaa.2006.03.072
- [19] Nikiforov, V. (2016). Beyond graph energy: Norms of graphs and matrices. Linear algebra and its applications, 506, 82–138. https://doi.org/10.1016/j.laa.2016.05.011
- [20] Zhang, J., & Li, J. (2012). New results on the incidence energy of graphs. MATCH commun. math. comput. chem, 68(3), 777–803. https://B2n.ir/fy8122
- [21] Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni–int decision making. European journal of operational research, 207(2), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004
- [22] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [23] Aggarwal, C. C., Aggarwal, L. F., & Lagerstrom-Fife. (2020). Linear algebra and optimization for machine learning (Vol. 156). Springer. https://doi.org/10.1007/978-3-030-40344-7