Algorithms for Clustering Fuzzy Soft Sets Based on Their Energies

Authors

https://doi.org/10.22105/scfa.vi.34

Abstract

In this paper, we continue the study of fuzzy soft sets and their applications. Besides the significance of energy and $\lambda$-energy of fuzzy soft sets for developing decision-making algorithms, these energies are also crucial for forming data clustering algorithms. The main result of this work is the development of data clustering algorithms based on the energies of fuzzy soft sets.

Keywords:

Fuzzy soft set, Energy, Singular values

References

  1. [1] Molodtsov, D. (1999). Soft set theory—First results. Computers & mathematics with applications, 37(4), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5

  2. [2] Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009

  3. [3] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6

  4. [4] Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: Extended difference of soft sets. Journal of new theory, (27), 33–42. https://dergipark.org.tr/en/pub/jnt/issue/43609/535589

  5. [5] Sezgin, A., & Atagün, A. O. (2011). On operations of soft sets. Computers & mathematics with applications, 61(5), 1457–1467. https://doi.org/10.1016/j.camwa.2011.01.018

  6. [6] Stojanović, N., & Joksimović, M. B. (2022). Soft outer measure and soft premeasure. Filomat, 36(6), 2129-2141. http://dx.doi.org/10.2298/FIL2206129S

  7. [7] Stojanović, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779–791. https://doi.org/10.5937/vojtehg69-33655

  8. [8] Maji, P. K., Biswas, R., & Roy, A. R. (2001). Fuzzy soft sets. J. fuzzy math, 9(3), 598–602. https://www.sid.ir/paper/633097/en

  9. [9] Çağman, N., Çıtak, F., & Enginoğlu, S. (2010). Fuzzy parameterized fuzzy soft set theory and its applications. Turkish journal of fuzzy systems, 1(1), 21–35. https://www.researchgate.net/publication/229041420

  10. [10] Cagman, N., Enginoglu, S., & Citak, F. (2011). Fuzzy soft set theory and its applications. Iranian journal of fuzzy systems, 8(3), 137–147. https://www.researchgate.net/publication/259895126

  11. [11] Feng, F., Jun, Y. B., Liu, X., & Li, L. (2010). An adjustable approach to fuzzy soft set based decision making. Journal of computational and applied mathematics, 234(1), 10–20. https://doi.org/10.1016/j.cam.2009.11.055

  12. [12] Liu, Z., Qin, K., & Pei, Z. (2017). A method for fuzzy soft sets in decision-making based on an ideal solution. Symmetry, 9(10), 246. https://doi.org/10.3390/sym9100246

  13. [13] Mudrić-Staniškovski, L., Djurovic, L., & Stojanović, N. (2024). Energy of a fuzzy soft set and its application in decision-making. Iranian journal of fuzzy systems, 21(2), 35–49. http://dx.doi.org/10.22111/ijfs.2024.46797.8243

  14. [14] Rezaei, K., & Rezaei, H. (2019). New distance and similarity measures for hesitant fuzzy soft sets. Iranian journal of fuzzy systems, 16(6), 159–176. https://doi.org/10.22111/ijfs.2019.5026

  15. [15] Gutman, I. (1978). The energy of a graph, 103, 1–22.

  16. [16] Gutman, I., Kiani, D., Mirzakhah, M., & Zhou, B. (2009). On incidence energy of a graph. Linear algebra and its applications, 431(8), 1223–1233. https://doi.org/10.1016/j.laa.2009.04.019

  17. [17] Jooyandeh, R., Kiani, D., & Mirzakhah, M. (2009). Incidence energy of a graph. Match (Mulheim an der ruhr, germany), 62, 561–572. https://www.researchgate.net/publication/235676733

  18. [18] Nikiforov, V. (2007). The energy of graphs and matrices. Journal of mathematical analysis and applications, 326(2), 1472–1475. https://doi.org/10.1016/j.jmaa.2006.03.072

  19. [19] Nikiforov, V. (2016). Beyond graph energy: Norms of graphs and matrices. Linear algebra and its applications, 506, 82–138. https://doi.org/10.1016/j.laa.2016.05.011

  20. [20] Zhang, J., & Li, J. (2012). New results on the incidence energy of graphs. MATCH commun. math. comput. chem, 68(3), 777–803. https://B2n.ir/fy8122

  21. [21] Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni–int decision making. European journal of operational research, 207(2), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004

  22. [22] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  23. [23] Aggarwal, C. C., Aggarwal, L. F., & Lagerstrom-Fife. (2020). Linear algebra and optimization for machine learning (Vol. 156). Springer. https://doi.org/10.1007/978-3-030-40344-7

Published

2025-07-21

How to Cite

Algorithms for Clustering Fuzzy Soft Sets Based on Their Energies. (2025). Soft Computing Fusion With Applications , 2(3), 127-133. https://doi.org/10.22105/scfa.vi.34

Similar Articles

11-20 of 23

You may also start an advanced similarity search for this article.